Home
Class 11
MATHS
If veca and vecb are non - zero vectors ...

If `veca and vecb` are non - zero vectors such that `|veca + vecb| = |veca - 2vecb|` then

A

`2 veca. vecb= |vecb|^(2)`

B

` veca. vecb= |vecb|^(2)`

C

least value of `veca . Vecb + 1/(|vecb|^(2) + 2) " is " sqrt2`

D

least value of `veca .vecb + 1/(|vecb|^(2) + 2) " is " sqrt2 -1 `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation involving the magnitudes of the vectors: Given: \[ |\vec{a} + \vec{b}| = |\vec{a} - 2\vec{b}| \] ### Step 1: Square both sides To eliminate the absolute values, we square both sides: \[ |\vec{a} + \vec{b}|^2 = |\vec{a} - 2\vec{b}|^2 \] ### Step 2: Expand both sides Using the property that \(|\vec{u}|^2 = \vec{u} \cdot \vec{u}\), we expand both sides: \[ (\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b}) = (\vec{a} - 2\vec{b}) \cdot (\vec{a} - 2\vec{b}) \] This gives us: \[ \vec{a} \cdot \vec{a} + 2\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{b} = \vec{a} \cdot \vec{a} - 4\vec{a} \cdot \vec{b} + 4\vec{b} \cdot \vec{b} \] ### Step 3: Simplify the equation Now we simplify both sides: \[ |\vec{a}|^2 + 2\vec{a} \cdot \vec{b} + |\vec{b}|^2 = |\vec{a}|^2 - 4\vec{a} \cdot \vec{b} + 4|\vec{b}|^2 \] ### Step 4: Rearrange the equation Subtract \(|\vec{a}|^2\) from both sides: \[ 2\vec{a} \cdot \vec{b} + |\vec{b}|^2 = -4\vec{a} \cdot \vec{b} + 4|\vec{b}|^2 \] Combine like terms: \[ 2\vec{a} \cdot \vec{b} + 4\vec{a} \cdot \vec{b} = 4|\vec{b}|^2 - |\vec{b}|^2 \] \[ 6\vec{a} \cdot \vec{b} = 3|\vec{b}|^2 \] ### Step 5: Solve for \( \vec{a} \cdot \vec{b} \) Dividing both sides by 3: \[ 2\vec{a} \cdot \vec{b} = |\vec{b}|^2 \] ### Conclusion Thus, we have: \[ \vec{a} \cdot \vec{b} = \frac{1}{2} |\vec{b}|^2 \] ### Final Answer The correct option based on our calculations is: - Option A: \(2\vec{a} \cdot \vec{b} = |\vec{b}|^2\)

To solve the problem, we start with the given equation involving the magnitudes of the vectors: Given: \[ |\vec{a} + \vec{b}| = |\vec{a} - 2\vec{b}| \] ### Step 1: Square both sides ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

If veca, vecb and vecc are non - zero vectors such that veca.vecb= veca.vecc ,then find the goemetrical relation between the vectors.

If veca, vecb are unit vectors such that |veca +vecb|=1 and |veca -vecb|=sqrt3 , then |3 veca+2vecb |=

If vecA and vecB are non-zero vectors which obey the relation |vecA+vecB|=|vecA-vecB|, then the angle between them is

If veca" and "vecb are any two vectors such |veca+vecb|=|veca-vecb| find the angle between veca" and "vecb

If veca, vecb, vecc are three non-zero vectors such that veca + vecb + vecc=0 and m = veca.vecb + vecb.vecc + vecc.veca , then:

Given that veca and vecb are two non zero vectors, then the value of (veca + vecb) xx (veca-vecb) is,

If veca and vecb are unequal unit vectors such that (veca - vecb) xx[ (vecb + veca) xx (2 veca + vecb)] = veca+vecb then angle theta " between " veca and vecb is

Let veca,vecb,vecc be three non-zero vectors such that [vecavecbvecc]=|veca||vecb||vecc| then

If veca and vecb are two unit vectors such that veca+2vecb and 5veca-4vecb are perpendicular to each other, then the angle between veca and vecb is

If veca and vecb are unit vectors such that (veca +vecb). (2veca + 3vecb)xx(3veca - 2vecb)=vec0 then angle between veca and vecb is

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. If veca and vecb are two unit vectors perpenicualar to each other and ...

    Text Solution

    |

  2. If vectors veca and vecb are non collinear then veca/(|veca|)+vecb/(|v...

    Text Solution

    |

  3. If veca and vecb are non - zero vectors such that |veca + vecb| = |vec...

    Text Solution

    |

  4. Let veca vecb and vecc be non- zero vectors aned vecV(1) =veca xx (vec...

    Text Solution

    |

  5. Vectors vecA and vecB satisfying the vector equation vecA+ vecB = vec...

    Text Solution

    |

  6. A vector vecd is equally inclined to three vectors veca=hati-hatj+hatk...

    Text Solution

    |

  7. Vectors perpendicular tohati-hatj-hatk and in the plane of hati+hatj+h...

    Text Solution

    |

  8. If the sides vec(AB) of an equilateral triangle ABC lying in the xy-pl...

    Text Solution

    |

  9. Let hata be a unit vector and hatb a non zero vector non parallel to v...

    Text Solution

    |

  10. veca ,vecb and vecc are unimodular and coplanar. A unit vector vecd is...

    Text Solution

    |

  11. If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc...

    Text Solution

    |

  12. Let veca and vecb be two non-collinear unit vectors. If vecu=veca-(vec...

    Text Solution

    |

  13. if veca xx vecb = vecc ,vecb xx vecc = veca , " where " vecc ne vec0 ...

    Text Solution

    |

  14. Let veca, vecb, and vecc be three non- coplanar vectors and vecd be a ...

    Text Solution

    |

  15. If vec a , vec b , a n d harr c are three unit vecrtors such that ...

    Text Solution

    |

  16. If in triangle ABC, vec(AB) = vecu/|vecu|-vecv/|vecv| and vec(AC) = (...

    Text Solution

    |

  17. [vecaxx vecb " " vecc xx vecd " " vecexx vecf] is equal to

    Text Solution

    |

  18. The scalars l and m such that lveca + m vecb =vecc, " where " veca, ve...

    Text Solution

    |

  19. If (veca xx vecb) xx (vecc xx vecd) . (veca xx vecd) =0 then which of ...

    Text Solution

    |

  20. A ,B ,Ca n dD are four points such that vec A B=m(2 hat i-6 hat j+2 h...

    Text Solution

    |