Home
Class 11
MATHS
Let veca vecb and vecc be non- zero vect...

Let `veca vecb and vecc` be non- zero vectors aned `vecV_(1) =veca xx (vecb xx vecc) and vecV_(2) = (veca xx vecb) xx vecc`.vectors `vecV_(1) and vecV_(2)` are equal . Then

A

`veca and vecb` ar orthogonal

B

`veca and vecc` are collinear

C

`vecb and vecc` ar orthogonal

D

`vecb= lambda (veca xx vecc) " when " lambda ` is a scalar

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given vectors \( \vec{V_1} \) and \( \vec{V_2} \) and use the properties of vector products. ### Step-by-Step Solution: 1. **Define the Vectors**: We have two vectors defined as follows: \[ \vec{V_1} = \vec{a} \times (\vec{b} \times \vec{c}) \] \[ \vec{V_2} = (\vec{a} \times \vec{b}) \times \vec{c} \] 2. **Set the Vectors Equal**: Since it is given that \( \vec{V_1} = \vec{V_2} \), we can write: \[ \vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \times \vec{c} \] 3. **Use the Vector Triple Product Identity**: We can apply the vector triple product identity, which states: \[ \vec{x} \times (\vec{y} \times \vec{z}) = (\vec{x} \cdot \vec{z}) \vec{y} - (\vec{x} \cdot \vec{y}) \vec{z} \] Applying this to \( \vec{V_1} \): \[ \vec{V_1} = \vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} \] 4. **Apply the Identity to \( \vec{V_2} \)**: Now, applying the identity to \( \vec{V_2} \): \[ \vec{V_2} = (\vec{a} \times \vec{b}) \times \vec{c} = (\vec{c} \cdot \vec{a}) \vec{b} - (\vec{c} \cdot \vec{b}) \vec{a} \] 5. **Set the Expanded Forms Equal**: Now we have: \[ (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} = (\vec{c} \cdot \vec{a}) \vec{b} - (\vec{c} \cdot \vec{b}) \vec{a} \] 6. **Rearranging the Equation**: Rearranging gives us: \[ (\vec{a} \cdot \vec{c}) \vec{b} + (\vec{c} \cdot \vec{b}) \vec{a} = (\vec{a} \cdot \vec{b}) \vec{c} + (\vec{c} \cdot \vec{a}) \vec{b} \] 7. **Analyzing the Coefficients**: From this equation, we can derive two conditions: - If \( \vec{a} \cdot \vec{b} = 0 \), then \( \vec{a} \) and \( \vec{b} \) are orthogonal. - If \( \vec{c} \) is a scalar multiple of \( \vec{a} \) (collinear), then \( \vec{c} = k\vec{a} \) for some scalar \( k \). 8. **Conclusion**: The conditions derived indicate that: - \( \vec{a} \) and \( \vec{c} \) are collinear. - \( \vec{b} \) can be expressed as a linear combination of \( \vec{a} \) and \( \vec{c} \). ### Final Result: Thus, the correct options are: - \( \vec{a} \) and \( \vec{c} \) are collinear. - \( \vec{b} \) can be expressed as \( \vec{b} = \lambda (\vec{a} \times \vec{c}) \) for some scalar \( \lambda \).

To solve the problem, we need to analyze the given vectors \( \vec{V_1} \) and \( \vec{V_2} \) and use the properties of vector products. ### Step-by-Step Solution: 1. **Define the Vectors**: We have two vectors defined as follows: \[ \vec{V_1} = \vec{a} \times (\vec{b} \times \vec{c}) ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

If veca and vecb are two non collinear vectors and vecu = veca-(veca.vecb).vecb and vecv=veca x vecb then vecv is

If veca, vecb, vecc are three non-zero vectors such that veca + vecb + vecc=0 and m = veca.vecb + vecb.vecc + vecc.veca , then:

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca , vecb and vecc are non- coplanar vectors and veca xx vecc is perpendicular to veca xx (vecb xx vecc) , then the value of [ veca xx ( vecb xx vecc)] xx vecc is equal to

Let veca and vecb be two non-collinear unit vectors. If vecu=veca-(veca.vecb)vecb and vecv=vecaxxvecb , then |vecv| is

Let veca , vecb and vecc be three non-zero vectors such that veca + vecb + vecc = vec0 and lambda vecb xx veca + vecbxxvecc + vecc xx veca = vec0 then find the value of lambda .

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) =

If vectors, vecb, vecc and vecd are not coplanar, the prove that vector (veca xx vecb) xx (vecc xx vecd) + ( veca xx vecc) xx (vecd xx vecb) + (veca xx vecd) xx (vecb xx vecc) is parallel to veca .

Let vecu, vecv and vecw be three unit vectors such that vecu + vecv + vecw = veca, vecuxx (vecv xx vecw)= vecb, (vecu xx vecv) xx vecw= vecc, vec a.vecu=3//2, veca.vecv=7//4 and |veca|=2 Vector vecu is

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. If vectors veca and vecb are non collinear then veca/(|veca|)+vecb/(|v...

    Text Solution

    |

  2. If veca and vecb are non - zero vectors such that |veca + vecb| = |vec...

    Text Solution

    |

  3. Let veca vecb and vecc be non- zero vectors aned vecV(1) =veca xx (vec...

    Text Solution

    |

  4. Vectors vecA and vecB satisfying the vector equation vecA+ vecB = vec...

    Text Solution

    |

  5. A vector vecd is equally inclined to three vectors veca=hati-hatj+hatk...

    Text Solution

    |

  6. Vectors perpendicular tohati-hatj-hatk and in the plane of hati+hatj+h...

    Text Solution

    |

  7. If the sides vec(AB) of an equilateral triangle ABC lying in the xy-pl...

    Text Solution

    |

  8. Let hata be a unit vector and hatb a non zero vector non parallel to v...

    Text Solution

    |

  9. veca ,vecb and vecc are unimodular and coplanar. A unit vector vecd is...

    Text Solution

    |

  10. If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc...

    Text Solution

    |

  11. Let veca and vecb be two non-collinear unit vectors. If vecu=veca-(vec...

    Text Solution

    |

  12. if veca xx vecb = vecc ,vecb xx vecc = veca , " where " vecc ne vec0 ...

    Text Solution

    |

  13. Let veca, vecb, and vecc be three non- coplanar vectors and vecd be a ...

    Text Solution

    |

  14. If vec a , vec b , a n d harr c are three unit vecrtors such that ...

    Text Solution

    |

  15. If in triangle ABC, vec(AB) = vecu/|vecu|-vecv/|vecv| and vec(AC) = (...

    Text Solution

    |

  16. [vecaxx vecb " " vecc xx vecd " " vecexx vecf] is equal to

    Text Solution

    |

  17. The scalars l and m such that lveca + m vecb =vecc, " where " veca, ve...

    Text Solution

    |

  18. If (veca xx vecb) xx (vecc xx vecd) . (veca xx vecd) =0 then which of ...

    Text Solution

    |

  19. A ,B ,Ca n dD are four points such that vec A B=m(2 hat i-6 hat j+2 h...

    Text Solution

    |

  20. If the vectors veca, vecb, vecc are non -coplanar and l,m,n are distin...

    Text Solution

    |