Home
Class 11
MATHS
If the sides vec(AB) of an equilateral t...

If the sides `vec(AB)` of an equilateral triangle ABC lying in the xy-plane is `3hati` then the side `vec(CB)` can be (A) `-3/2(hati-sqrt(3))` (B) `3/2(hati-sqrt(3))` (C) `-3/2(hati+sqrt(3))` (D) `3/2(hati+sqrt(3))`

A

`-3/2(hati- sqrt3hatj)`

B

`-3/2(hati- sqrt3hatj)`

C

`-3/2(hati + sqrt3hatj)`

D

`3/2(hati + sqrt3hatj)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the vector \(\vec{CB}\) of an equilateral triangle \(ABC\) where the side \(\vec{AB} = 3\hat{i}\). ### Step-by-Step Solution: 1. **Understanding the Triangle**: - Given that \(AB\) is a side of an equilateral triangle and is represented as \(\vec{AB} = 3\hat{i}\), we can denote the coordinates of points \(A\) and \(B\). - Let \(A = (0, 0)\) and \(B = (3, 0)\). 2. **Finding Point C**: - In an equilateral triangle, the angle between any two sides is \(60^\circ\). - The coordinates of point \(C\) can be found using the properties of rotation. - The point \(C\) can be obtained by rotating point \(B\) around point \(A\) by \(60^\circ\) counterclockwise. 3. **Using Rotation Matrix**: - The rotation matrix for an angle \(\theta\) is given by: \[ R(\theta) = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \] - For \(\theta = 60^\circ\): \[ R(60^\circ) = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} \] 4. **Applying the Rotation**: - The coordinates of point \(B\) are \((3, 0)\). We can apply the rotation matrix to find the coordinates of point \(C\): \[ C = R(60^\circ) \cdot \begin{pmatrix} 3 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \cdot 3 + 0 \cdot (-\frac{\sqrt{3}}{2}) \\ \frac{\sqrt{3}}{2} \cdot 3 + 0 \cdot \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{3}{2} \\ \frac{3\sqrt{3}}{2} \end{pmatrix} \] 5. **Finding Vector CB**: - Now, we can find the vector \(\vec{CB}\) which is given by: \[ \vec{CB} = \vec{B} - \vec{C} = (3, 0) - \left(\frac{3}{2}, \frac{3\sqrt{3}}{2}\right) = \left(3 - \frac{3}{2}, 0 - \frac{3\sqrt{3}}{2}\right) = \left(\frac{3}{2}, -\frac{3\sqrt{3}}{2}\right) \] 6. **Expressing in Vector Form**: - Thus, the vector \(\vec{CB}\) can be expressed as: \[ \vec{CB} = \frac{3}{2} \hat{i} - \frac{3\sqrt{3}}{2} \hat{j} \] 7. **Comparing with Options**: - Now we can compare \(\vec{CB}\) with the given options: - (A) \(-\frac{3}{2}(\hat{i} - \sqrt{3})\) - (B) \(\frac{3}{2}(\hat{i} - \sqrt{3})\) - (C) \(-\frac{3}{2}(\hat{i} + \sqrt{3})\) - (D) \(\frac{3}{2}(\hat{i} + \sqrt{3})\) - After simplifying the options, we find that option (B) matches our derived vector. ### Conclusion: The correct answer is **(B) \(\frac{3}{2}(\hat{i} - \sqrt{3})\)**.

To solve the problem, we need to find the vector \(\vec{CB}\) of an equilateral triangle \(ABC\) where the side \(\vec{AB} = 3\hat{i}\). ### Step-by-Step Solution: 1. **Understanding the Triangle**: - Given that \(AB\) is a side of an equilateral triangle and is represented as \(\vec{AB} = 3\hat{i}\), we can denote the coordinates of points \(A\) and \(B\). - Let \(A = (0, 0)\) and \(B = (3, 0)\). ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

If side vec A B of an equilateral trangle A B C lying in the x-y plane 3 hat i , then side vec C B can be a. -3/2( hat i-sqrt(3) hat j) b. -3/2( hat i-sqrt(3) hat j) c. -3/2( hat i+sqrt(3) hat j) d. 3/2( hat i+sqrt(3) hat j)

A rectangle is inscribed in an equilateral triangle of side length 2a units. The maximum area of this rectangle can be (a) sqrt(3)a^2 (b) (sqrt(3)a^2)/4 a^2 (d) (sqrt(3)a^2)/2

One vertex of an equilateral triangle is (2,2) and its centroid is (-2/sqrt3,2/sqrt3) then length of its side is (a) 4sqrt(2) (b) 4sqrt(3) (c) 3sqrt(2) (d) 5sqrt(2)

veca=hati-hatj+hatk and vecb=2hati+4hati+3hatk are one of the sides and medians respectively of a triangle through the same vertex, then area of the triangle is (A) 1/2 sqrt(83) (B) sqrt(83) (C) 1/2 sqrt(85) (D) sqrt(86)

The unit vector which is orthogonal to the vector 3hati+2hatj+6hatk and is coplanar with the vectors 2hati+hatj+hatk and hati-hatj+hatk is (A) (2hati-6hatj+hatk)/sqrt(41) (B) (2hati-3hatj)/sqrt(3) (C) 3hatj-hatk)/sqrt(10) (D) (4hati+3hatj-3hatk)/sqrt(34)

If the work done by a force vecF=hati+hatj-8hatk along a givne vector in the xy-plane is 8 units and the magnitude of the given vector is 4sqrt(3) then the given vector is represented as (A) (4+2sqrt(2))hati+(4-2sqrt(2))hatj (B) (4hati+3sqrt(2)hatj) (C) (4sqrt(2)hati+4hatj) (D) (4+2sqrt(2))(hati+hatj)

If the vectors vec(AB)=3hati+4hatk and vec(AC)=5hati-2hatj+4hatk are the sides of a triangle ABC, then the length of the median through A is (A) sqrt(33) (B) sqrt(45) (C) sqrt(18) (D) sqrt(720

The vector (s) equally inclined to the vectors hati-hatj+hatk and hati+hatj-hatk in the plane containing them is (are_ (A) (hati+hatj+hatk)/sqrt(3) (B) hati (C) hati+hatk (D) hati-hatk

The ratio of the area of a square of side a and that of an equilateral triangle of side a , is (a) 2:1\ (b) 2:sqrt(3)\ (c) 4:3 (d) 4:sqrt(3)

Two sides of a triangle are given by hati+hatj+hatk and -hati+2hatj+3hatk then area of triangle is

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. A vector vecd is equally inclined to three vectors veca=hati-hatj+hatk...

    Text Solution

    |

  2. Vectors perpendicular tohati-hatj-hatk and in the plane of hati+hatj+h...

    Text Solution

    |

  3. If the sides vec(AB) of an equilateral triangle ABC lying in the xy-pl...

    Text Solution

    |

  4. Let hata be a unit vector and hatb a non zero vector non parallel to v...

    Text Solution

    |

  5. veca ,vecb and vecc are unimodular and coplanar. A unit vector vecd is...

    Text Solution

    |

  6. If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc...

    Text Solution

    |

  7. Let veca and vecb be two non-collinear unit vectors. If vecu=veca-(vec...

    Text Solution

    |

  8. if veca xx vecb = vecc ,vecb xx vecc = veca , " where " vecc ne vec0 ...

    Text Solution

    |

  9. Let veca, vecb, and vecc be three non- coplanar vectors and vecd be a ...

    Text Solution

    |

  10. If vec a , vec b , a n d harr c are three unit vecrtors such that ...

    Text Solution

    |

  11. If in triangle ABC, vec(AB) = vecu/|vecu|-vecv/|vecv| and vec(AC) = (...

    Text Solution

    |

  12. [vecaxx vecb " " vecc xx vecd " " vecexx vecf] is equal to

    Text Solution

    |

  13. The scalars l and m such that lveca + m vecb =vecc, " where " veca, ve...

    Text Solution

    |

  14. If (veca xx vecb) xx (vecc xx vecd) . (veca xx vecd) =0 then which of ...

    Text Solution

    |

  15. A ,B ,Ca n dD are four points such that vec A B=m(2 hat i-6 hat j+2 h...

    Text Solution

    |

  16. If the vectors veca, vecb, vecc are non -coplanar and l,m,n are distin...

    Text Solution

    |

  17. Let vec(alpha)=ahati+bhatj+chatk, vec(beta)=bhati+chatj+ahatk and vec(...

    Text Solution

    |

  18. if vectors vecA = 2hati + 3hatj + 4hatk , vecB = hati + hatj + 5hatk a...

    Text Solution

    |

  19. If veca=xhati + y hatj + zhatk, vecb= yhati + zhatj + xhatk and vecc=...

    Text Solution

    |

  20. If veca xx (vecbxx vecc)= (veca xx vecb)xxvecc then

    Text Solution

    |