Home
Class 11
MATHS
veca ,vecb and vecc are unimodular and c...

`veca ,vecb and vecc` are unimodular and coplanar. A unit vector `vecd` is perpendicualt to them , `(veca xx vecb) xx (vecc xx vecd) = 1/6 hati - 1/3 hatj + 1/3 hatk` , and the angle between `veca and vecb is 30^(@)` then `vecc` is

A

`(hati-2 hatj + 2 hatk)//3`

B

`(-hati +2hatj - 2 hatk)//3`

C

`(-hati +2hatj - hatk)//3`

D

`(-2hati -2hatj + hatk)//3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will use the properties of vectors, particularly focusing on the scalar triple product and the geometric relationships given in the problem. ### Step-by-Step Solution: 1. **Understanding the Given Information**: - Vectors \( \vec{a}, \vec{b}, \vec{c} \) are unimodular (each has a magnitude of 1). - Vectors \( \vec{a}, \vec{b}, \vec{c} \) are coplanar, which implies that their scalar triple product is zero: \( \vec{a} \cdot (\vec{b} \times \vec{c}) = 0 \). - A unit vector \( \vec{d} \) is perpendicular to \( \vec{a}, \vec{b}, \) and \( \vec{c} \). - The equation given is \( (\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = \frac{1}{6} \hat{i} - \frac{1}{3} \hat{j} + \frac{1}{3} \hat{k} \). - The angle between \( \vec{a} \) and \( \vec{b} \) is \( 30^\circ \). 2. **Using the Scalar Triple Product**: - The scalar triple product can be expressed as \( \vec{a} \cdot (\vec{b} \times \vec{c}) \). - Since \( \vec{d} \) is perpendicular to \( \vec{a} \) and \( \vec{b} \), we can express \( \vec{c} \) in terms of \( \vec{a} \) and \( \vec{b} \). 3. **Calculating the Cross Product**: - The expression \( (\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) \) can be simplified using the vector triple product identity: \[ \vec{x} \times (\vec{y} \times \vec{z}) = (\vec{x} \cdot \vec{z}) \vec{y} - (\vec{x} \cdot \vec{y}) \vec{z} \] - Here, let \( \vec{x} = \vec{a} \times \vec{b} \), \( \vec{y} = \vec{c} \), and \( \vec{z} = \vec{d} \). 4. **Finding the Magnitude**: - The magnitude of \( \vec{a} \times \vec{b} \) is given by: \[ |\vec{a} \times \vec{b}| = |\vec{a}||\vec{b}|\sin(30^\circ) = 1 \cdot 1 \cdot \frac{1}{2} = \frac{1}{2} \] - Thus, \( \vec{a} \times \vec{b} \) is a vector with magnitude \( \frac{1}{2} \). 5. **Substituting into the Equation**: - We can substitute into the equation: \[ \frac{1}{2} \cdot \vec{c} \cdot \vec{d} = \frac{1}{6} \hat{i} - \frac{1}{3} \hat{j} + \frac{1}{3} \hat{k} \] - Since \( \vec{d} \) is a unit vector, we can equate: \[ \vec{c} \cdot \vec{d} = \frac{1}{6} \cdot 2 \hat{i} - \frac{1}{3} \cdot 2 \hat{j} + \frac{1}{3} \cdot 2 \hat{k} = \frac{1}{3} \hat{i} - \frac{2}{3} \hat{j} + \frac{2}{3} \hat{k} \] 6. **Finding \( \vec{c} \)**: - Since \( \vec{c} \) is also a unit vector, we can express \( \vec{c} \) in terms of its components: \[ \vec{c} = x \hat{i} + y \hat{j} + z \hat{k} \] - Using the fact that \( |\vec{c}| = 1 \), we have: \[ x^2 + y^2 + z^2 = 1 \] 7. **Solving for \( \vec{c} \)**: - From the previous calculations, we can find \( \vec{c} \) that satisfies both the dot product and the unit vector condition. - After solving, we find: \[ \vec{c} = \frac{1}{3} \hat{i} - \frac{2}{3} \hat{j} + \frac{2}{3} \hat{k} \] ### Final Answer: \[ \vec{c} = \frac{1}{3} \hat{i} - \frac{2}{3} \hat{j} + \frac{2}{3} \hat{k} \]

To solve the problem step by step, we will use the properties of vectors, particularly focusing on the scalar triple product and the geometric relationships given in the problem. ### Step-by-Step Solution: 1. **Understanding the Given Information**: - Vectors \( \vec{a}, \vec{b}, \vec{c} \) are unimodular (each has a magnitude of 1). - Vectors \( \vec{a}, \vec{b}, \vec{c} \) are coplanar, which implies that their scalar triple product is zero: \( \vec{a} \cdot (\vec{b} \times \vec{c}) = 0 \). - A unit vector \( \vec{d} \) is perpendicular to \( \vec{a}, \vec{b}, \) and \( \vec{c} \). ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

Given vecC = vecA xx vecB and vecD = vecB xx vecA . What is the angle between vecC and vecD ?

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca , vecb and vecc are non- coplanar vectors and veca xx vecc is perpendicular to veca xx (vecb xx vecc) , then the value of [ veca xx ( vecb xx vecc)] xx vecc is equal to

Three vectors veca,vecb,vecc are such that veca xx vecb=4(veca xx vecc) and |veca|=|vecb|=1 and |vecc|=1/4 . If the angle between vecb and vecc is pi/3 then vecb is

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

If vecb and vecc are unit vectors, then for any arbitary vector veca, (((veca xx vecb) + (veca xx vecc))xx (vecb xx vecc)) .(vecb -vecc) is always equal to

If (veca xx vecb) xx (vecc xx vecd) . (veca xx vecd) =0 then which of the following may be true ?

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) =

let veca, vecb and vecc be three unit vectors such that veca xx (vecb xx vecc) =sqrt(3)/2 (vecb + vecc) . If vecb is not parallel to vecc , then the angle between veca and vecb is:

Let veca,vecb,vecc be three non coplanar and vecd be a vector which is perpendicular to veca + vecb + vecc . If vecd = xvecb xx vecc + yvecc xx veca + zveca xx vecb the-

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. If the sides vec(AB) of an equilateral triangle ABC lying in the xy-pl...

    Text Solution

    |

  2. Let hata be a unit vector and hatb a non zero vector non parallel to v...

    Text Solution

    |

  3. veca ,vecb and vecc are unimodular and coplanar. A unit vector vecd is...

    Text Solution

    |

  4. If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc...

    Text Solution

    |

  5. Let veca and vecb be two non-collinear unit vectors. If vecu=veca-(vec...

    Text Solution

    |

  6. if veca xx vecb = vecc ,vecb xx vecc = veca , " where " vecc ne vec0 ...

    Text Solution

    |

  7. Let veca, vecb, and vecc be three non- coplanar vectors and vecd be a ...

    Text Solution

    |

  8. If vec a , vec b , a n d harr c are three unit vecrtors such that ...

    Text Solution

    |

  9. If in triangle ABC, vec(AB) = vecu/|vecu|-vecv/|vecv| and vec(AC) = (...

    Text Solution

    |

  10. [vecaxx vecb " " vecc xx vecd " " vecexx vecf] is equal to

    Text Solution

    |

  11. The scalars l and m such that lveca + m vecb =vecc, " where " veca, ve...

    Text Solution

    |

  12. If (veca xx vecb) xx (vecc xx vecd) . (veca xx vecd) =0 then which of ...

    Text Solution

    |

  13. A ,B ,Ca n dD are four points such that vec A B=m(2 hat i-6 hat j+2 h...

    Text Solution

    |

  14. If the vectors veca, vecb, vecc are non -coplanar and l,m,n are distin...

    Text Solution

    |

  15. Let vec(alpha)=ahati+bhatj+chatk, vec(beta)=bhati+chatj+ahatk and vec(...

    Text Solution

    |

  16. if vectors vecA = 2hati + 3hatj + 4hatk , vecB = hati + hatj + 5hatk a...

    Text Solution

    |

  17. If veca=xhati + y hatj + zhatk, vecb= yhati + zhatj + xhatk and vecc=...

    Text Solution

    |

  18. If veca xx (vecbxx vecc)= (veca xx vecb)xxvecc then

    Text Solution

    |

  19. A vector vecd is equally inclined to three vectors veca=hati-hatj+hatk...

    Text Solution

    |

  20. A parallelogram is constructed on the vectors veca=3vecalpha-vecbeta, ...

    Text Solution

    |