Home
Class 11
MATHS
If veca + 2 vecb + 3 vecc = vec0 " then...

If `veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca= `

A

`2 (veca xx vecb)`

B

` 6( vecb xx vecc)`

C

`3 ( vecc xx veca)`

D

`vec0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \vec{a} + 2\vec{b} + 3\vec{c} = \vec{0} \] We need to find the value of: \[ \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} \] ### Step 1: Rearranging the Given Equation From the equation \(\vec{a} + 2\vec{b} + 3\vec{c} = \vec{0}\), we can express \(\vec{a}\) in terms of \(\vec{b}\) and \(\vec{c}\): \[ \vec{a} = -2\vec{b} - 3\vec{c} \] ### Step 2: Cross Product with \(\vec{a}\) Now, we will take the cross product of \(\vec{a}\) with the entire equation: \[ \vec{a} \times (\vec{a} + 2\vec{b} + 3\vec{c}) = \vec{a} \times \vec{0} \] This gives us: \[ \vec{a} \times \vec{a} + 2\vec{a} \times \vec{b} + 3\vec{a} \times \vec{c} = \vec{0} \] Since \(\vec{a} \times \vec{a} = \vec{0}\), we simplify this to: \[ 2\vec{a} \times \vec{b} + 3\vec{a} \times \vec{c} = \vec{0} \] ### Step 3: Expressing \(\vec{a} \times \vec{c}\) From the equation above, we can express \(\vec{a} \times \vec{c}\): \[ 3\vec{a} \times \vec{c} = -2\vec{a} \times \vec{b} \] Dividing through by 3 gives: \[ \vec{a} \times \vec{c} = -\frac{2}{3}\vec{a} \times \vec{b} \] ### Step 4: Cross Product with \(\vec{c}\) Next, we take the cross product of the entire original equation with \(\vec{c}\): \[ \vec{c} \times (\vec{a} + 2\vec{b} + 3\vec{c}) = \vec{c} \times \vec{0} \] This simplifies to: \[ \vec{c} \times \vec{a} + 2\vec{c} \times \vec{b} + 3\vec{c} \times \vec{c} = \vec{0} \] Since \(\vec{c} \times \vec{c} = \vec{0}\), we have: \[ \vec{c} \times \vec{a} + 2\vec{c} \times \vec{b} = \vec{0} \] ### Step 5: Expressing \(\vec{c} \times \vec{a}\) From this equation, we can express \(\vec{c} \times \vec{a}\): \[ \vec{c} \times \vec{a} = -2\vec{c} \times \vec{b} \] ### Step 6: Substitute Back into the Expression Now we substitute \(\vec{c} \times \vec{a}\) into our original expression: \[ \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} \] Using \(\vec{c} \times \vec{a} = -2\vec{c} \times \vec{b}\): \[ \vec{a} \times \vec{b} + \vec{b} \times \vec{c} - 2\vec{c} \times \vec{b} \] ### Step 7: Combine Like Terms Now we can combine the terms: \[ \vec{a} \times \vec{b} + \vec{b} \times \vec{c} - 2\vec{b} \times \vec{c} = \vec{a} \times \vec{b} - \vec{b} \times \vec{c} \] ### Step 8: Final Result Thus, we find that: \[ \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} = \frac{1}{2} \vec{a} \times \vec{b} \] This leads us to conclude that: \[ \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} = \vec{0} \] ### Final Answer The final answer is: \[ \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} = \vec{0} \]

To solve the problem, we start with the given equation: \[ \vec{a} + 2\vec{b} + 3\vec{c} = \vec{0} \] We need to find the value of: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

if veca + vecb + vecc=0 , then show that veca xx vecb = vecb xx vecc = vecc xx veca .

Let veca , vecb and vecc be three non-zero vectors such that veca + vecb + vecc = vec0 and lambda vecb xx veca + vecbxxvecc + vecc xx veca = vec0 then find the value of lambda .

If vec a,vec b , vec c are unit vectors such that veca + vec b+ vecc = 0 and lambda = veca.vecb + vecb.vecc+vecc.veca and d = veca xx vecb + vecb xx vecc + vecc xx veca , then (lambda,vecd) is

Let veca, vecb , vecc be non -coplanar vectors and let equations veca', vecb', vecc' are reciprocal system of vector veca, vecb ,vecc then prove that veca xx veca' + vecb xx vecb' + vecc xx vecc' is a null vector.

If |veca|=3, |vecb|=1, |vecc|=4 and veca + vecb + vecc= vec0 , find the value of veca.vecb+ vecb.vecc + vecc.veca .

If vectors, vecb, vecc and vecd are not coplanar, the prove that vector (veca xx vecb) xx (vecc xx vecd) + ( veca xx vecc) xx (vecd xx vecb) + (veca xx vecd) xx (vecb xx vecc) is parallel to veca .

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

If veca .vecb =beta and veca xx vecb = vecc ," then " vecb is

if veca xx vecb = vecc ,vecb xx vecc = veca , " where " vecc ne vec0 then (a) |veca|= |vecc| (b) |veca|= |vecb| (c) |vecb|=1 (d) |veca|=|vecb|= |vecc|=1

If veca is parallel to vecb xx vecc, then (veca xx vecb) .(veca xx vecc) is equal to (a) |veca|^(2)(vecb.vecc) (b) |vecb|^(2)(veca .vecc) (c) |vecc|^(2)(veca.vecb) (d) none of these

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. If the sides vec(AB) of an equilateral triangle ABC lying in the xy-pl...

    Text Solution

    |

  2. Let hata be a unit vector and hatb a non zero vector non parallel to v...

    Text Solution

    |

  3. veca ,vecb and vecc are unimodular and coplanar. A unit vector vecd is...

    Text Solution

    |

  4. If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc...

    Text Solution

    |

  5. Let veca and vecb be two non-collinear unit vectors. If vecu=veca-(vec...

    Text Solution

    |

  6. if veca xx vecb = vecc ,vecb xx vecc = veca , " where " vecc ne vec0 ...

    Text Solution

    |

  7. Let veca, vecb, and vecc be three non- coplanar vectors and vecd be a ...

    Text Solution

    |

  8. If vec a , vec b , a n d harr c are three unit vecrtors such that ...

    Text Solution

    |

  9. If in triangle ABC, vec(AB) = vecu/|vecu|-vecv/|vecv| and vec(AC) = (...

    Text Solution

    |

  10. [vecaxx vecb " " vecc xx vecd " " vecexx vecf] is equal to

    Text Solution

    |

  11. The scalars l and m such that lveca + m vecb =vecc, " where " veca, ve...

    Text Solution

    |

  12. If (veca xx vecb) xx (vecc xx vecd) . (veca xx vecd) =0 then which of ...

    Text Solution

    |

  13. A ,B ,Ca n dD are four points such that vec A B=m(2 hat i-6 hat j+2 h...

    Text Solution

    |

  14. If the vectors veca, vecb, vecc are non -coplanar and l,m,n are distin...

    Text Solution

    |

  15. Let vec(alpha)=ahati+bhatj+chatk, vec(beta)=bhati+chatj+ahatk and vec(...

    Text Solution

    |

  16. if vectors vecA = 2hati + 3hatj + 4hatk , vecB = hati + hatj + 5hatk a...

    Text Solution

    |

  17. If veca=xhati + y hatj + zhatk, vecb= yhati + zhatj + xhatk and vecc=...

    Text Solution

    |

  18. If veca xx (vecbxx vecc)= (veca xx vecb)xxvecc then

    Text Solution

    |

  19. A vector vecd is equally inclined to three vectors veca=hati-hatj+hatk...

    Text Solution

    |

  20. A parallelogram is constructed on the vectors veca=3vecalpha-vecbeta, ...

    Text Solution

    |