Home
Class 11
MATHS
Let veca and vecb be two non-collinear u...

Let `veca` and `vecb` be two non-collinear unit vectors. If `vecu=veca-(veca.vecb)vecb` and `vecv=vecaxxvecb`, then `|vecv|` is

A

`|vecu|`

B

`|vecu|+ |vecu.vecb|`

C

`|vecu| + |vecu .veca|`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the magnitude of the vector \( \vec{v} \), which is given by \( \vec{v} = \vec{a} \times \vec{b} \), where \( \vec{a} \) and \( \vec{b} \) are non-collinear unit vectors. ### Step-by-step Solution: 1. **Understanding the Given Information**: - We have two non-collinear unit vectors \( \vec{a} \) and \( \vec{b} \). - The vector \( \vec{u} \) is defined as \( \vec{u} = \vec{a} - (\vec{a} \cdot \vec{b}) \vec{b} \). - We need to find the magnitude of \( \vec{v} = \vec{a} \times \vec{b} \). 2. **Finding the Magnitude of \( \vec{u} \)**: - We can express the magnitude of \( \vec{u} \): \[ |\vec{u}| = |\vec{a} - (\vec{a} \cdot \vec{b}) \vec{b}| \] - Using the property of magnitudes, we have: \[ |\vec{u}| = \sqrt{|\vec{a}|^2 + |(\vec{a} \cdot \vec{b})|^2 |\vec{b}|^2 - 2 |\vec{a}| |\vec{b}| (\vec{a} \cdot \vec{b})} \] - Since \( \vec{a} \) and \( \vec{b} \) are unit vectors, \( |\vec{a}| = 1 \) and \( |\vec{b}| = 1 \). Thus: \[ |\vec{u}| = \sqrt{1 + (\vec{a} \cdot \vec{b})^2 - 2(\vec{a} \cdot \vec{b})} \] 3. **Simplifying the Expression**: - Let \( \theta \) be the angle between \( \vec{a} \) and \( \vec{b} \). Then, \( \vec{a} \cdot \vec{b} = \cos \theta \). - Substitute \( \cos \theta \) into the equation: \[ |\vec{u}| = \sqrt{1 + \cos^2 \theta - 2\cos \theta} \] - This simplifies to: \[ |\vec{u}| = \sqrt{1 - 2\cos \theta + \cos^2 \theta} = \sqrt{(1 - \cos \theta)^2} = |1 - \cos \theta| \] - Since \( \theta \) is between \( 0 \) and \( \pi \) for non-collinear vectors, \( 1 - \cos \theta \) is always non-negative. Therefore: \[ |\vec{u}| = 1 - \cos \theta \] 4. **Finding the Magnitude of \( \vec{v} \)**: - The magnitude of the cross product \( \vec{v} = \vec{a} \times \vec{b} \) is given by: \[ |\vec{v}| = |\vec{a}| |\vec{b}| \sin \theta \] - Again, since both \( \vec{a} \) and \( \vec{b} \) are unit vectors, we have: \[ |\vec{v}| = 1 \cdot 1 \cdot \sin \theta = \sin \theta \] 5. **Relating \( |\vec{u}| \) and \( |\vec{v}| \)**: - From the previous steps, we have: \[ |\vec{u}| = 1 - \cos \theta \] \[ |\vec{v}| = \sin \theta \] - Using the identity \( \sin^2 \theta + \cos^2 \theta = 1 \), we can express \( \sin \theta \) in terms of \( |\vec{u}| \): \[ \sin \theta = \sqrt{1 - \cos^2 \theta} = \sqrt{1 - (1 - |\vec{u}|)^2} \] - This leads us to conclude that \( |\vec{u}| = |\vec{v}| \). ### Final Result: Thus, the magnitude \( |\vec{v}| \) is equal to \( |\vec{u}| \). ### Answer: \[ |\vec{v}| = \sin \theta \]

To solve the problem, we need to find the magnitude of the vector \( \vec{v} \), which is given by \( \vec{v} = \vec{a} \times \vec{b} \), where \( \vec{a} \) and \( \vec{b} \) are non-collinear unit vectors. ### Step-by-step Solution: 1. **Understanding the Given Information**: - We have two non-collinear unit vectors \( \vec{a} \) and \( \vec{b} \). - The vector \( \vec{u} \) is defined as \( \vec{u} = \vec{a} - (\vec{a} \cdot \vec{b}) \vec{b} \). - We need to find the magnitude of \( \vec{v} = \vec{a} \times \vec{b} \). ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

If veca and vecb are two non collinear vectors and vecu = veca-(veca.vecb).vecb and vecv=veca x vecb then vecv is

If veca and vecb be two non-collinear unit vectors such that vecaxx(vecaxxvecb)=-1/2vecb ,then find the angle between veca and vecb .

If vecu=veca-vecb , vecv=veca+vecb and |veca|=|vecb|=2 , then |vecuxxvecv| is equal to

If veca and vecb are two non collinear unit vectors and |veca+vecb|=sqrt(3) then find the value of (veca-vecb).(2veca+vecb)

If veca,vecb and vecc are non coplaner vectors such that vecbxxvecc=veca , veccxxveca=vecb and vecaxxvecb=vecc then |veca+vecb+vecc| =

If veca, vecb, vecc are non coplanar vectors such that vecbxxvecc=veca, vecaxxvecb=vecc and veccxxveca=vecb then (A) |veca|+|vecb|+|vecc|=3 (B) |vecb|=1 (C) |veca|=1 (D) none of these

Let veca and vecb are vectors such that |veca|=2, |vecb|=3 and veca. vecb=4 . If vecc=(3veca xx vecb)-4vecb , then |vecc| is equal to

IF veca and vecb re two vectors show that |vecaxxvecb|^2=a^2b^2-(veca.vecb)^2

Let veca vecb and vecc be non- zero vectors aned vecV_(1) =veca xx (vecb xx vecc) and vecV_(2) = (veca xx vecb) xx vecc .vectors vecV_(1) and vecV_(2) are equal . Then

If veca and vecb be two non collinear vectors such that veca=vecc+vecd , where vecc is parallel to vecb and vecd is perpendicular to vecb obtain expression for vecc and vecd in terms of veca and vecb as: vecd= veca- ((veca.vecb)vecb)/b^2,vecc= ((veca.vecb)vecb)/b^2

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. If the sides vec(AB) of an equilateral triangle ABC lying in the xy-pl...

    Text Solution

    |

  2. Let hata be a unit vector and hatb a non zero vector non parallel to v...

    Text Solution

    |

  3. veca ,vecb and vecc are unimodular and coplanar. A unit vector vecd is...

    Text Solution

    |

  4. If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc...

    Text Solution

    |

  5. Let veca and vecb be two non-collinear unit vectors. If vecu=veca-(vec...

    Text Solution

    |

  6. if veca xx vecb = vecc ,vecb xx vecc = veca , " where " vecc ne vec0 ...

    Text Solution

    |

  7. Let veca, vecb, and vecc be three non- coplanar vectors and vecd be a ...

    Text Solution

    |

  8. If vec a , vec b , a n d harr c are three unit vecrtors such that ...

    Text Solution

    |

  9. If in triangle ABC, vec(AB) = vecu/|vecu|-vecv/|vecv| and vec(AC) = (...

    Text Solution

    |

  10. [vecaxx vecb " " vecc xx vecd " " vecexx vecf] is equal to

    Text Solution

    |

  11. The scalars l and m such that lveca + m vecb =vecc, " where " veca, ve...

    Text Solution

    |

  12. If (veca xx vecb) xx (vecc xx vecd) . (veca xx vecd) =0 then which of ...

    Text Solution

    |

  13. A ,B ,Ca n dD are four points such that vec A B=m(2 hat i-6 hat j+2 h...

    Text Solution

    |

  14. If the vectors veca, vecb, vecc are non -coplanar and l,m,n are distin...

    Text Solution

    |

  15. Let vec(alpha)=ahati+bhatj+chatk, vec(beta)=bhati+chatj+ahatk and vec(...

    Text Solution

    |

  16. if vectors vecA = 2hati + 3hatj + 4hatk , vecB = hati + hatj + 5hatk a...

    Text Solution

    |

  17. If veca=xhati + y hatj + zhatk, vecb= yhati + zhatj + xhatk and vecc=...

    Text Solution

    |

  18. If veca xx (vecbxx vecc)= (veca xx vecb)xxvecc then

    Text Solution

    |

  19. A vector vecd is equally inclined to three vectors veca=hati-hatj+hatk...

    Text Solution

    |

  20. A parallelogram is constructed on the vectors veca=3vecalpha-vecbeta, ...

    Text Solution

    |