Home
Class 11
MATHS
Let veca, vecb, and vecc be three non- c...

Let `veca, vecb, and vecc` be three non- coplanar vectors and `vecd` be a non -zero , which is perpendicular to `(veca + vecb + vecc). Now vecd = (veca xx vecb) sin x + (vecb xx vecc) cos y + 2 (vecc xx veca) `. Then

A

`(vecd. (veca + vecc))/([veca vecb vecc])=2`

B

`(vecd. (veca + vecc))/([veca vecb vecc])=-2`

C

minimum value of `x^(2) + y^(2) is pi^(2)//4`

D

minimum value of `x^(2) + y^(2) is 5 pi^(2)//4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we will analyze the provided information and derive the necessary relationships. ### Step 1: Understand the given vectors and their properties We have three non-coplanar vectors \( \vec{a}, \vec{b}, \vec{c} \) and a vector \( \vec{d} \) which is perpendicular to the sum of these vectors: \[ \vec{d} \cdot (\vec{a} + \vec{b} + \vec{c}) = 0 \] ### Step 2: Express \( \vec{d} \) The vector \( \vec{d} \) is given as: \[ \vec{d} = (\vec{a} \times \vec{b}) \sin x + (\vec{b} \times \vec{c}) \cos y + 2(\vec{c} \times \vec{a}) \] ### Step 3: Substitute \( \vec{d} \) into the perpendicularity condition We need to substitute \( \vec{d} \) into the condition that it is perpendicular to \( \vec{a} + \vec{b} + \vec{c} \): \[ \vec{d} \cdot (\vec{a} + \vec{b} + \vec{c}) = 0 \] This expands to: \[ [(\vec{a} \times \vec{b}) \sin x + (\vec{b} \times \vec{c}) \cos y + 2(\vec{c} \times \vec{a})] \cdot (\vec{a} + \vec{b} + \vec{c}) = 0 \] ### Step 4: Expand the dot product We will expand the dot product: \[ (\vec{a} \times \vec{b}) \cdot (\vec{a} + \vec{b} + \vec{c}) \sin x + (\vec{b} \times \vec{c}) \cdot (\vec{a} + \vec{b} + \vec{c}) \cos y + 2(\vec{c} \times \vec{a}) \cdot (\vec{a} + \vec{b} + \vec{c}) = 0 \] ### Step 5: Evaluate each term 1. **First term**: \[ (\vec{a} \times \vec{b}) \cdot \vec{a} = 0 \quad \text{and} \quad (\vec{a} \times \vec{b}) \cdot \vec{b} = 0 \] Thus, \[ (\vec{a} \times \vec{b}) \cdot (\vec{c}) \sin x \] 2. **Second term**: \[ (\vec{b} \times \vec{c}) \cdot \vec{a} + 0 + (\vec{b} \times \vec{c}) \cdot \vec{c} = 0 \] Thus, \[ (\vec{b} \times \vec{c}) \cdot \vec{a} \cos y \] 3. **Third term**: \[ 2(\vec{c} \times \vec{a}) \cdot \vec{a} = 0 \quad \text{and} \quad 2(\vec{c} \times \vec{a}) \cdot \vec{b} + 2(\vec{c} \times \vec{a}) \cdot \vec{c} = 0 \] Thus, \[ 2(\vec{c} \times \vec{a}) \cdot \vec{b} \] ### Step 6: Combine the results Combining all the terms, we have: \[ (\vec{a} \times \vec{b}) \cdot \vec{c} \sin x + (\vec{b} \times \vec{c}) \cdot \vec{a} \cos y + 2(\vec{c} \times \vec{a}) \cdot \vec{b} = 0 \] ### Step 7: Solve for \( \sin x \) and \( \cos y \) From the equation, we can express \( \sin x \) and \( \cos y \) in terms of the dot products of the vectors. ### Step 8: Find the minimum value To find the minimum value of \( x^2 + y^2 \), we need to find values of \( x \) and \( y \) that satisfy the conditions derived above. 1. From the derived equations, we can set \( \sin x = -1 \) and \( \cos y = -1 \). 2. This gives \( x = -\frac{\pi}{2} \) and \( y = \pi \). ### Step 9: Calculate \( x^2 + y^2 \) \[ x^2 + y^2 = \left(-\frac{\pi}{2}\right)^2 + \pi^2 = \frac{\pi^2}{4} + \pi^2 = \frac{5\pi^2}{4} \] ### Conclusion Thus, the minimum value of \( x^2 + y^2 \) is \( \frac{5\pi^2}{4} \). ---

To solve the given problem step by step, we will analyze the provided information and derive the necessary relationships. ### Step 1: Understand the given vectors and their properties We have three non-coplanar vectors \( \vec{a}, \vec{b}, \vec{c} \) and a vector \( \vec{d} \) which is perpendicular to the sum of these vectors: \[ \vec{d} \cdot (\vec{a} + \vec{b} + \vec{c}) = 0 \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

Let veca,vecb and vecc be the three non-coplanar vectors and vecd be a non zero vector which is perpendicular to veca+vecb+vecc and is represented as vecd=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca) . Then,

Let veca,vecb,vecc be three non coplanar and vecd be a vector which is perpendicular to veca + vecb + vecc . If vecd = xvecb xx vecc + yvecc xx veca + zveca xx vecb the-

If veca , vecb and vecc are non- coplanar vectors and veca xx vecc is perpendicular to veca xx (vecb xx vecc) , then the value of [ veca xx ( vecb xx vecc)] xx vecc is equal to

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

if veca + vecb + vecc=0 , then show that veca xx vecb = vecb xx vecc = vecc xx veca .

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

Let veca, vecb , vecc be non -coplanar vectors and let equations veca', vecb', vecc' are reciprocal system of vector veca, vecb ,vecc then prove that veca xx veca' + vecb xx vecb' + vecc xx vecc' is a null vector.

If vectors, vecb, vecc and vecd are not coplanar, the prove that vector (veca xx vecb) xx (vecc xx vecd) + ( veca xx vecc) xx (vecd xx vecb) + (veca xx vecd) xx (vecb xx vecc) is parallel to veca .

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. If the sides vec(AB) of an equilateral triangle ABC lying in the xy-pl...

    Text Solution

    |

  2. Let hata be a unit vector and hatb a non zero vector non parallel to v...

    Text Solution

    |

  3. veca ,vecb and vecc are unimodular and coplanar. A unit vector vecd is...

    Text Solution

    |

  4. If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc...

    Text Solution

    |

  5. Let veca and vecb be two non-collinear unit vectors. If vecu=veca-(vec...

    Text Solution

    |

  6. if veca xx vecb = vecc ,vecb xx vecc = veca , " where " vecc ne vec0 ...

    Text Solution

    |

  7. Let veca, vecb, and vecc be three non- coplanar vectors and vecd be a ...

    Text Solution

    |

  8. If vec a , vec b , a n d harr c are three unit vecrtors such that ...

    Text Solution

    |

  9. If in triangle ABC, vec(AB) = vecu/|vecu|-vecv/|vecv| and vec(AC) = (...

    Text Solution

    |

  10. [vecaxx vecb " " vecc xx vecd " " vecexx vecf] is equal to

    Text Solution

    |

  11. The scalars l and m such that lveca + m vecb =vecc, " where " veca, ve...

    Text Solution

    |

  12. If (veca xx vecb) xx (vecc xx vecd) . (veca xx vecd) =0 then which of ...

    Text Solution

    |

  13. A ,B ,Ca n dD are four points such that vec A B=m(2 hat i-6 hat j+2 h...

    Text Solution

    |

  14. If the vectors veca, vecb, vecc are non -coplanar and l,m,n are distin...

    Text Solution

    |

  15. Let vec(alpha)=ahati+bhatj+chatk, vec(beta)=bhati+chatj+ahatk and vec(...

    Text Solution

    |

  16. if vectors vecA = 2hati + 3hatj + 4hatk , vecB = hati + hatj + 5hatk a...

    Text Solution

    |

  17. If veca=xhati + y hatj + zhatk, vecb= yhati + zhatj + xhatk and vecc=...

    Text Solution

    |

  18. If veca xx (vecbxx vecc)= (veca xx vecb)xxvecc then

    Text Solution

    |

  19. A vector vecd is equally inclined to three vectors veca=hati-hatj+hatk...

    Text Solution

    |

  20. A parallelogram is constructed on the vectors veca=3vecalpha-vecbeta, ...

    Text Solution

    |