Home
Class 11
MATHS
If in triangle ABC, vec(AB) = vecu/|vec...

If in triangle ABC, ` vec(AB) = vecu/|vecu|-vecv/|vecv| and vec(AC) = (2vecu)/|vecu| , " where " |vecu| ne |vecv|` , then `(a)1 + cos 2A + cos 2B + cos 2C=0` (b)`sin A = cos C` (c)projection of AC on BC is equal to BC (d) projection of AB on BC is equal to AB

A

`1 + cos 2A + cos 2B + cos 2C=0`

B

`sin A = cos C`

C

projection of AC on BC is equal to BC

D

projection of AB on BC is equal to AB

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start by analyzing the vectors given in the triangle ABC. ### Step 1: Define the vectors Given: - \( \vec{AB} = \frac{\vec{u}}{|\vec{u}|} - \frac{\vec{v}}{|\vec{v}|} \) - \( \vec{AC} = \frac{2\vec{u}}{|\vec{u}|} \) ### Step 2: Find the vector \( \vec{BC} \) Using the property of triangles that \( \vec{AB} + \vec{BC} + \vec{CA} = 0 \), we can express \( \vec{BC} \) as: \[ \vec{BC} = -\vec{AB} - \vec{AC} \] Substituting the expressions for \( \vec{AB} \) and \( \vec{AC} \): \[ \vec{BC} = -\left(\frac{\vec{u}}{|\vec{u}|} - \frac{\vec{v}}{|\vec{v}|}\right) - \frac{2\vec{u}}{|\vec{u}|} \] Simplifying this, we get: \[ \vec{BC} = -\frac{\vec{u}}{|\vec{u}|} + \frac{\vec{v}}{|\vec{v}|} - \frac{2\vec{u}}{|\vec{u}|} = \frac{\vec{v}}{|\vec{v}|} - \frac{3\vec{u}}{|\vec{u}|} \] ### Step 3: Calculate the magnitudes of the vectors Now we will find the magnitudes of the vectors: - \( |\vec{AB}| = \left| \frac{\vec{u}}{|\vec{u}|} - \frac{\vec{v}}{|\vec{v}|} \right| \) - \( |\vec{AC}| = \left| \frac{2\vec{u}}{|\vec{u}|} \right| = 2 \) - \( |\vec{BC}| = \left| \frac{\vec{v}}{|\vec{v}|} - \frac{3\vec{u}}{|\vec{u}|} \right| \) ### Step 4: Establish relationships between the angles Using the cosine rule in triangle ABC: \[ |\vec{AC}|^2 = |\vec{AB}|^2 + |\vec{BC}|^2 - 2|\vec{AB}||\vec{BC}|\cos C \] Substituting the known values and simplifying will help us establish relationships between angles A, B, and C. ### Step 5: Check the options 1. **Option (a)**: \( 1 + \cos 2A + \cos 2B + \cos 2C = 0 \) - Since angle B is 90 degrees, we can substitute \( \cos B = 0 \) and find that the equation holds true. 2. **Option (b)**: \( \sin A = \cos C \) - Since \( A + C = 90^\circ \), this relationship holds true. 3. **Option (c)**: Projection of \( AC \) on \( BC \) is equal to \( BC \) - Since \( AC \) is the hypotenuse, its projection on the side \( BC \) will always equal \( BC \). 4. **Option (d)**: Projection of \( AB \) on \( BC \) is equal to \( AB \) - Since \( AB \) and \( BC \) are perpendicular, the projection will be 0, not equal to \( AB \). ### Conclusion The correct options are (a), (b), and (c). The incorrect option is (d).

To solve the problem, we start by analyzing the vectors given in the triangle ABC. ### Step 1: Define the vectors Given: - \( \vec{AB} = \frac{\vec{u}}{|\vec{u}|} - \frac{\vec{v}}{|\vec{v}|} \) - \( \vec{AC} = \frac{2\vec{u}}{|\vec{u}|} \) ### Step 2: Find the vector \( \vec{BC} \) ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

If in triangle A B C , vec A B= vec u/(| vec u|)- vec v/(| vec v|)a n d vec A C=(2 vec u)/(| vec u|),w h e r e| vec u|!=| vec v|, then a. 1+cos2A+cos2B+cos2C=0 b. sinA=cos C c. projection of A C on B C is equal to B C d. projection of A B on B C is equal to A B

If vecu=veca-vecb , vecv=veca+vecb and |veca|=|vecb|=2 , then |vecuxxvecv| is equal to

Assertion : If in a /_\ABC, vec(BC)=vecp/|vecp|-vecq/|vecq| and vec(AC)=(2vecp)/|vecp|,|vecp|!=|veq| then the value of cos2A+cos2B+cos2C is -1., Reason: If in /_\ABC, /_C=90^0 then cos2A+cos2B+cos2C=-1 (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

In Delta ABC of a :b:c= 7 : 8: 9 .Then cos A : cos B is equal to :-

If vecV=2veci+3vecj and vecY=veci-5vecj , the resultant vector of 2vecU+3vecV equals

In any DeltaABC, 2 [bc cos A + ca cos B+ ab cos C]=

If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) + vec(ED) + vec(AC) is equal to

If in a triangle ABC, 2 (cos A)/(a) + (cos B)/(b) +2 (cos C)/(c) = (a)/(bc) + b/(ca) then the value of the angle A is

Prove that bc cos^(2).(A)/(2) + ca cos^(2).(B)/(2) + ab cos^(2).(C)/(2) = s^(2)

Let vecu,vecv and vecw be vectors such that vecu+ vecv + vecw =0 if |vecu|= 3, |vecv|=4 and |vecw|=5 then vecu.vecv + vecv .vecw + vecw .vecu is (a) 47 (b) -25 (c) 0 (d) 25

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. If the sides vec(AB) of an equilateral triangle ABC lying in the xy-pl...

    Text Solution

    |

  2. Let hata be a unit vector and hatb a non zero vector non parallel to v...

    Text Solution

    |

  3. veca ,vecb and vecc are unimodular and coplanar. A unit vector vecd is...

    Text Solution

    |

  4. If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc...

    Text Solution

    |

  5. Let veca and vecb be two non-collinear unit vectors. If vecu=veca-(vec...

    Text Solution

    |

  6. if veca xx vecb = vecc ,vecb xx vecc = veca , " where " vecc ne vec0 ...

    Text Solution

    |

  7. Let veca, vecb, and vecc be three non- coplanar vectors and vecd be a ...

    Text Solution

    |

  8. If vec a , vec b , a n d harr c are three unit vecrtors such that ...

    Text Solution

    |

  9. If in triangle ABC, vec(AB) = vecu/|vecu|-vecv/|vecv| and vec(AC) = (...

    Text Solution

    |

  10. [vecaxx vecb " " vecc xx vecd " " vecexx vecf] is equal to

    Text Solution

    |

  11. The scalars l and m such that lveca + m vecb =vecc, " where " veca, ve...

    Text Solution

    |

  12. If (veca xx vecb) xx (vecc xx vecd) . (veca xx vecd) =0 then which of ...

    Text Solution

    |

  13. A ,B ,Ca n dD are four points such that vec A B=m(2 hat i-6 hat j+2 h...

    Text Solution

    |

  14. If the vectors veca, vecb, vecc are non -coplanar and l,m,n are distin...

    Text Solution

    |

  15. Let vec(alpha)=ahati+bhatj+chatk, vec(beta)=bhati+chatj+ahatk and vec(...

    Text Solution

    |

  16. if vectors vecA = 2hati + 3hatj + 4hatk , vecB = hati + hatj + 5hatk a...

    Text Solution

    |

  17. If veca=xhati + y hatj + zhatk, vecb= yhati + zhatj + xhatk and vecc=...

    Text Solution

    |

  18. If veca xx (vecbxx vecc)= (veca xx vecb)xxvecc then

    Text Solution

    |

  19. A vector vecd is equally inclined to three vectors veca=hati-hatj+hatk...

    Text Solution

    |

  20. A parallelogram is constructed on the vectors veca=3vecalpha-vecbeta, ...

    Text Solution

    |