Home
Class 11
MATHS
[vecaxx vecb " " vecc xx vecd " " vecex...

`[vecaxx vecb " " vecc xx vecd " " vecexx vecf]` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem `[veca x vecb " " vecc x vecd " " vece x vecf]`, we will follow the steps outlined in the video transcript. ### Step-by-step Solution: 1. **Define the Cross Products**: - Let \( A = \vec{a} \times \vec{b} \) - Let \( B = \vec{c} \times \vec{d} \) - Let \( C = \vec{e} \times \vec{f} \) 2. **Use the Associative Property of Cross Products**: - The cross product is associative, which means we can rearrange the terms. Thus, we can express the entire expression as: \[ A \times (B \times C) \] 3. **Apply the Vector Triple Product Identity**: - We can use the vector triple product identity: \[ \vec{x} \times (\vec{y} \times \vec{z}) = (\vec{x} \cdot \vec{z}) \vec{y} - (\vec{x} \cdot \vec{y}) \vec{z} \] Here, let \( \vec{x} = \vec{a} \), \( \vec{y} = \vec{c} \), and \( \vec{z} = \vec{e} \). 4. **Substitute the Values**: - Substitute \( B = \vec{c} \times \vec{d} \) and \( C = \vec{e} \times \vec{f} \) into the identity: \[ \vec{a} \times (\vec{c} \times \vec{d}) = (\vec{a} \cdot \vec{d}) \vec{c} - (\vec{a} \cdot \vec{c}) \vec{d} \] 5. **Combine with the Third Cross Product**: - Now, we need to multiply the result by \( \vec{e} \times \vec{f} \): \[ \text{Final Result} = \left[(\vec{a} \cdot \vec{d}) \vec{c} - (\vec{a} \cdot \vec{c}) \vec{d}\right] \times (\vec{e} \times \vec{f}) \] 6. **Expand Using the Vector Triple Product Again**: - We can apply the vector triple product identity again to expand this expression. 7. **Final Expression**: - After performing the necessary calculations, we can summarize the final expression as: \[ \text{Final Result} = (\vec{a} \cdot \vec{d})(\vec{c} \times \vec{e} \times \vec{f}) - (\vec{a} \cdot \vec{c})(\vec{d} \times \vec{e} \times \vec{f}) \] ### Final Answer: The expression `[veca x vecb " " vecc x vecd " " vece x vecf]` simplifies to: \[ (\vec{a} \cdot \vec{d})(\vec{c} \times \vec{e} \times \vec{f}) - (\vec{a} \cdot \vec{c})(\vec{d} \times \vec{e} \times \vec{f}) \]

To solve the problem `[veca x vecb " " vecc x vecd " " vece x vecf]`, we will follow the steps outlined in the video transcript. ### Step-by-step Solution: 1. **Define the Cross Products**: - Let \( A = \vec{a} \times \vec{b} \) - Let \( B = \vec{c} \times \vec{d} \) - Let \( C = \vec{e} \times \vec{f} \) ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

If veca is parallel to vecb xx vecc, then (veca xx vecb) .(veca xx vecc) is equal to (a) |veca|^(2)(vecb.vecc) (b) |vecb|^(2)(veca .vecc) (c) |vecc|^(2)(veca.vecb) (d) none of these

[(veca xxvecb)xx(vecb xx vecc) (vecb xxvecc) xx (vecc xxveca) (veccxxveca) xx (veca xx vecb)] is equal to ( where veca, vecb and vecc are non - zero non- colanar vectors). (a) [veca vecb vecc] ^(2) (b)[veca vecb vecc] ^(3) (c)[veca vecb vecc] ^(4) (d)[veca vecb vecc]

If vectors, vecb, vecc and vecd are not coplanar, the prove that vector (veca xx vecb) xx (vecc xx vecd) + ( veca xx vecc) xx (vecd xx vecb) + (veca xx vecd) xx (vecb xx vecc) is parallel to veca .

If vecA,vecB,vecC are non-coplanar vectors than ( vecA . vecB xx vecC )/(vecCxxvecA.vecB)+(vecB. vecA xx vecC)/( vecC. vecA xx vecB) is equal to

veca,vecb,vecc are three non-coplanar such that veca + vecb + vecc = alpha vecd and vecb + vecc + vecd = beta veca , then veca + vecb + vecc + vecd is equal to:

If (veca xx vecb) xx (vecc xx vecd) . (veca xx vecd) =0 then which of the following may be true ?

If veca , vecb and vecc are non- coplanar vectors and veca xx vecc is perpendicular to veca xx (vecb xx vecc) , then the value of [ veca xx ( vecb xx vecc)] xx vecc is equal to

If veca, vecb, vecc are the unit vectors such that veca + 2vecb + 2vecc=0 , then |veca xx vecc| is equal to:

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

Let vec r xx veca = vec b xx veca and vecc vecr=0 , where veca.vecc ne 0 , then veca.vecc(vecr xx vecb)+(vecb.vecc)(veca xx vecr) is equal to __________.

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. If the sides vec(AB) of an equilateral triangle ABC lying in the xy-pl...

    Text Solution

    |

  2. Let hata be a unit vector and hatb a non zero vector non parallel to v...

    Text Solution

    |

  3. veca ,vecb and vecc are unimodular and coplanar. A unit vector vecd is...

    Text Solution

    |

  4. If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc...

    Text Solution

    |

  5. Let veca and vecb be two non-collinear unit vectors. If vecu=veca-(vec...

    Text Solution

    |

  6. if veca xx vecb = vecc ,vecb xx vecc = veca , " where " vecc ne vec0 ...

    Text Solution

    |

  7. Let veca, vecb, and vecc be three non- coplanar vectors and vecd be a ...

    Text Solution

    |

  8. If vec a , vec b , a n d harr c are three unit vecrtors such that ...

    Text Solution

    |

  9. If in triangle ABC, vec(AB) = vecu/|vecu|-vecv/|vecv| and vec(AC) = (...

    Text Solution

    |

  10. [vecaxx vecb " " vecc xx vecd " " vecexx vecf] is equal to

    Text Solution

    |

  11. The scalars l and m such that lveca + m vecb =vecc, " where " veca, ve...

    Text Solution

    |

  12. If (veca xx vecb) xx (vecc xx vecd) . (veca xx vecd) =0 then which of ...

    Text Solution

    |

  13. A ,B ,Ca n dD are four points such that vec A B=m(2 hat i-6 hat j+2 h...

    Text Solution

    |

  14. If the vectors veca, vecb, vecc are non -coplanar and l,m,n are distin...

    Text Solution

    |

  15. Let vec(alpha)=ahati+bhatj+chatk, vec(beta)=bhati+chatj+ahatk and vec(...

    Text Solution

    |

  16. if vectors vecA = 2hati + 3hatj + 4hatk , vecB = hati + hatj + 5hatk a...

    Text Solution

    |

  17. If veca=xhati + y hatj + zhatk, vecb= yhati + zhatj + xhatk and vecc=...

    Text Solution

    |

  18. If veca xx (vecbxx vecc)= (veca xx vecb)xxvecc then

    Text Solution

    |

  19. A vector vecd is equally inclined to three vectors veca=hati-hatj+hatk...

    Text Solution

    |

  20. A parallelogram is constructed on the vectors veca=3vecalpha-vecbeta, ...

    Text Solution

    |