Home
Class 11
MATHS
The scalars l and m such that lveca + m ...

The scalars l and m such that `lveca + m vecb =vecc, " where " veca, vecb and vecc` are given vectors, are equal to

A

`l= ((veccxxvecb).(vecaxxvecb))/((vecaxxvecb)^(2))`

B

`l = ((vecc xx veca). (vecb xxveca))/((vecbxxveca))`

C

`m = ((veccxx veca). (vecbxxveca))/((vecb xx veca)^(2))`

D

`m = ((veccxx veca). (vecbxxveca))/((vecb xx veca))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the scalars \( l \) and \( m \) such that \( l \vec{a} + m \vec{b} = \vec{c} \), we can use the properties of vector cross products. Here’s a step-by-step solution: ### Step 1: Set up the equation We start with the equation given in the problem: \[ l \vec{a} + m \vec{b} = \vec{c} \] ### Step 2: Cross with vector \( \vec{b} \) To isolate \( l \), we can cross both sides of the equation with vector \( \vec{b} \): \[ (l \vec{a} + m \vec{b}) \times \vec{b} = \vec{c} \times \vec{b} \] Using the distributive property of the cross product, this simplifies to: \[ l (\vec{a} \times \vec{b}) + m (\vec{b} \times \vec{b}) = \vec{c} \times \vec{b} \] Since \( \vec{b} \times \vec{b} = \vec{0} \), we have: \[ l (\vec{a} \times \vec{b}) = \vec{c} \times \vec{b} \] ### Step 3: Solve for \( l \) Now, we can express \( l \) as: \[ l = \frac{\vec{c} \times \vec{b}}{\vec{a} \times \vec{b}} \] ### Step 4: Cross with vector \( \vec{a} \) Next, we cross both sides of the original equation with vector \( \vec{a} \): \[ (l \vec{a} + m \vec{b}) \times \vec{a} = \vec{c} \times \vec{a} \] This simplifies to: \[ l (\vec{a} \times \vec{a}) + m (\vec{b} \times \vec{a}) = \vec{c} \times \vec{a} \] Since \( \vec{a} \times \vec{a} = \vec{0} \), we have: \[ m (\vec{b} \times \vec{a}) = \vec{c} \times \vec{a} \] ### Step 5: Solve for \( m \) Now, we can express \( m \) as: \[ m = \frac{\vec{c} \times \vec{a}}{\vec{b} \times \vec{a}} \] ### Final Result Thus, the scalars \( l \) and \( m \) are given by: \[ l = \frac{\vec{c} \times \vec{b}}{\vec{a} \times \vec{b}} \quad \text{and} \quad m = \frac{\vec{c} \times \vec{a}}{\vec{b} \times \vec{a}} \]

To solve the problem of finding the scalars \( l \) and \( m \) such that \( l \vec{a} + m \vec{b} = \vec{c} \), we can use the properties of vector cross products. Here’s a step-by-step solution: ### Step 1: Set up the equation We start with the equation given in the problem: \[ l \vec{a} + m \vec{b} = \vec{c} \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

[ veca + vecb vecb + vecc vecc + veca ]=[ veca vecb vecc ] , then

If veca xx vecb = vecb xx vecc ne 0 where veca , vecb and vecc are coplanar vectors, then for some scalar k prove that veca+vecc = kbvecb .

If veca xx vecb = vecb xx vecc ne 0 where veca , vecb and vecc are coplanar vectors, then for some scalar k prove that veca+vecc = kvecb .

Angle between vectors veca and vecb " where " veca,vecb and vecc are unit vectors satisfying veca + vecb + sqrt3 vecc = vec0 is

Let veca , vecb,vecc be three vectors such that veca bot ( vecb + vecc), vecb bot ( vecc + veca) and vecc bot ( veca + vecb) , " if " |veca| =1 , |vecb| =2 , |vecc| =3 , " then " | veca + vecb + vecc| is,

if veca , vecb ,vecc are three vectors such that veca +vecb + vecc = vec0 then

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If veca, vecb,vecc are three non-coplanar vectors such that veca xx vecb=vecc,vecb xx vecc=veca,vecc xx veca=vecb , then the value of |veca|+|vecb|+|vecc| is

veca.(vecbxxvecc) is called the scalar triple product of veca,vecb,vecc and is denoted by [veca vecb vecc]. If veca, vecb, vecc are cyclically permuted the vaslue of the scalar triple product remasin the same. In a scalar triple product, interchange of two vectors changes the sign of scalar triple product but not the magnitude. in scalar triple product the the position of the dot and cross can be interchanged privided the cyclic order of vectors is preserved. Also the scaslar triple product is ZERO if any two vectors are equal or parallel. (A) [vecb-vecc vecc-veca veca-vecb] (B) [veca vecb vecc] (C) 0 (D) none of these

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. If the sides vec(AB) of an equilateral triangle ABC lying in the xy-pl...

    Text Solution

    |

  2. Let hata be a unit vector and hatb a non zero vector non parallel to v...

    Text Solution

    |

  3. veca ,vecb and vecc are unimodular and coplanar. A unit vector vecd is...

    Text Solution

    |

  4. If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc...

    Text Solution

    |

  5. Let veca and vecb be two non-collinear unit vectors. If vecu=veca-(vec...

    Text Solution

    |

  6. if veca xx vecb = vecc ,vecb xx vecc = veca , " where " vecc ne vec0 ...

    Text Solution

    |

  7. Let veca, vecb, and vecc be three non- coplanar vectors and vecd be a ...

    Text Solution

    |

  8. If vec a , vec b , a n d harr c are three unit vecrtors such that ...

    Text Solution

    |

  9. If in triangle ABC, vec(AB) = vecu/|vecu|-vecv/|vecv| and vec(AC) = (...

    Text Solution

    |

  10. [vecaxx vecb " " vecc xx vecd " " vecexx vecf] is equal to

    Text Solution

    |

  11. The scalars l and m such that lveca + m vecb =vecc, " where " veca, ve...

    Text Solution

    |

  12. If (veca xx vecb) xx (vecc xx vecd) . (veca xx vecd) =0 then which of ...

    Text Solution

    |

  13. A ,B ,Ca n dD are four points such that vec A B=m(2 hat i-6 hat j+2 h...

    Text Solution

    |

  14. If the vectors veca, vecb, vecc are non -coplanar and l,m,n are distin...

    Text Solution

    |

  15. Let vec(alpha)=ahati+bhatj+chatk, vec(beta)=bhati+chatj+ahatk and vec(...

    Text Solution

    |

  16. if vectors vecA = 2hati + 3hatj + 4hatk , vecB = hati + hatj + 5hatk a...

    Text Solution

    |

  17. If veca=xhati + y hatj + zhatk, vecb= yhati + zhatj + xhatk and vecc=...

    Text Solution

    |

  18. If veca xx (vecbxx vecc)= (veca xx vecb)xxvecc then

    Text Solution

    |

  19. A vector vecd is equally inclined to three vectors veca=hati-hatj+hatk...

    Text Solution

    |

  20. A parallelogram is constructed on the vectors veca=3vecalpha-vecbeta, ...

    Text Solution

    |