Home
Class 11
MATHS
If (veca xx vecb) xx (vecc xx vecd) . (v...

If `(veca xx vecb) xx (vecc xx vecd) . (veca xx vecd) =0` then which of the following may be true ?

A

`veca, vecb ,vecc and vecd` are nenessarily coplanar

B

`veca` lies in the plane of `vecc and vecd`

C

`vecb` lies in the plane of `veca and vecd`

D

`vecc` lies in the plane of `veca and vecd`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given vector equation: \[ (\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) \cdot (\vec{a} \times \vec{d}) = 0 \] ### Step 1: Understand the vector triple product The equation involves a triple product and a dot product. We can use the vector triple product identity, which states that: \[ \vec{x} \times (\vec{y} \times \vec{z}) = (\vec{x} \cdot \vec{z}) \vec{y} - (\vec{x} \cdot \vec{y}) \vec{z} \] ### Step 2: Apply the identity Let \(\vec{x} = \vec{a} \times \vec{b}\), \(\vec{y} = \vec{c}\), and \(\vec{z} = \vec{d}\). We can rewrite the expression: \[ (\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = ((\vec{a} \times \vec{b}) \cdot \vec{d}) \vec{c} - ((\vec{a} \times \vec{b}) \cdot \vec{c}) \vec{d} \] ### Step 3: Substitute back into the dot product Now, substituting this back into the original equation gives us: \[ (((\vec{a} \times \vec{b}) \cdot \vec{d}) \vec{c} - ((\vec{a} \times \vec{b}) \cdot \vec{c}) \vec{d}) \cdot (\vec{a} \times \vec{d}) = 0 \] ### Step 4: Expand the dot product We can expand this dot product: \[ ((\vec{a} \times \vec{b}) \cdot \vec{d}) (\vec{c} \cdot (\vec{a} \times \vec{d})) - ((\vec{a} \times \vec{b}) \cdot \vec{c}) (\vec{d} \cdot (\vec{a} \times \vec{d})) = 0 \] ### Step 5: Analyze the conditions For this equation to hold true, either: 1. \((\vec{a} \times \vec{b}) \cdot \vec{d} = 0\) or 2. \((\vec{c} \cdot (\vec{a} \times \vec{d})) = 0\) This implies that either \(\vec{d}\) is in the plane formed by \(\vec{a}\) and \(\vec{b}\), or \(\vec{c}\) is in the plane formed by \(\vec{a}\) and \(\vec{d}\). ### Conclusion Thus, we can conclude that: - Option A: \(\vec{a}, \vec{b}, \vec{c}, \vec{d}\) are necessarily coplanar. - Option B: \(\vec{b}\) lies in the plane of \(\vec{a}\) and \(\vec{d}\). - Option C: \(\vec{c}\) lies in the plane of \(\vec{a}\) and \(\vec{d}\). Therefore, options B, C, and D may be true.

To solve the problem, we need to analyze the given vector equation: \[ (\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) \cdot (\vec{a} \times \vec{d}) = 0 \] ### Step 1: Understand the vector triple product The equation involves a triple product and a dot product. We can use the vector triple product identity, which states that: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

If veca xx (vecbxx vecc)= (veca xx vecb)xxvecc then

[vecaxx vecb " " vecc xx vecd " " vecexx vecf] is equal to

If alpha(veca xx vecb)+beta(vecb xx vecc)+lambda(vecc xx veca)=0 , then

If vecaxxvecb=vecc,vecb xx vecc=veca, where vecc != vec0, then

If vectors, vecb, vecc and vecd are not coplanar, the prove that vector (veca xx vecb) xx (vecc xx vecd) + ( veca xx vecc) xx (vecd xx vecb) + (veca xx vecd) xx (vecb xx vecc) is parallel to veca .

If veca,vecb,vecc,vecd be vectors such that [vecavecbvecc]=2 and (vecaxxvecb) xx (vecc xx vecd)+(vecb xx vecc) xx (vecc xx vecd) + (vecc xx veca) xx (vecb xx vecd)=-muvecd Then the value of mu is

veca=2hati+hatj+2hatk, vecb=hati-hatj+hatk and non zero vector vecc are such that (veca xx vecb) xx vecc = veca xx (vecb xx vecc) . Then vector vecc may be given as

If (veca xx vecb) xx (vec c xx vecd)=h veca+k vecb=r vec c+s vecd , where veca, vecb are non-collinear and vec c, vec d are also non-collinear then :

If veca xx (vec b xx vecc) is perpendicular to (veca xx vecb ) xx vecc , we may have

Let veca=2hati-hatj+3hatk, vecb=hati+hatj-4hatk and non - zero vector vecc are such that (veca xx vecb)xx vecc =veca xx(vecb xx vecc) , then vector vecc may be

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. If the sides vec(AB) of an equilateral triangle ABC lying in the xy-pl...

    Text Solution

    |

  2. Let hata be a unit vector and hatb a non zero vector non parallel to v...

    Text Solution

    |

  3. veca ,vecb and vecc are unimodular and coplanar. A unit vector vecd is...

    Text Solution

    |

  4. If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc...

    Text Solution

    |

  5. Let veca and vecb be two non-collinear unit vectors. If vecu=veca-(vec...

    Text Solution

    |

  6. if veca xx vecb = vecc ,vecb xx vecc = veca , " where " vecc ne vec0 ...

    Text Solution

    |

  7. Let veca, vecb, and vecc be three non- coplanar vectors and vecd be a ...

    Text Solution

    |

  8. If vec a , vec b , a n d harr c are three unit vecrtors such that ...

    Text Solution

    |

  9. If in triangle ABC, vec(AB) = vecu/|vecu|-vecv/|vecv| and vec(AC) = (...

    Text Solution

    |

  10. [vecaxx vecb " " vecc xx vecd " " vecexx vecf] is equal to

    Text Solution

    |

  11. The scalars l and m such that lveca + m vecb =vecc, " where " veca, ve...

    Text Solution

    |

  12. If (veca xx vecb) xx (vecc xx vecd) . (veca xx vecd) =0 then which of ...

    Text Solution

    |

  13. A ,B ,Ca n dD are four points such that vec A B=m(2 hat i-6 hat j+2 h...

    Text Solution

    |

  14. If the vectors veca, vecb, vecc are non -coplanar and l,m,n are distin...

    Text Solution

    |

  15. Let vec(alpha)=ahati+bhatj+chatk, vec(beta)=bhati+chatj+ahatk and vec(...

    Text Solution

    |

  16. if vectors vecA = 2hati + 3hatj + 4hatk , vecB = hati + hatj + 5hatk a...

    Text Solution

    |

  17. If veca=xhati + y hatj + zhatk, vecb= yhati + zhatj + xhatk and vecc=...

    Text Solution

    |

  18. If veca xx (vecbxx vecc)= (veca xx vecb)xxvecc then

    Text Solution

    |

  19. A vector vecd is equally inclined to three vectors veca=hati-hatj+hatk...

    Text Solution

    |

  20. A parallelogram is constructed on the vectors veca=3vecalpha-vecbeta, ...

    Text Solution

    |