Home
Class 11
MATHS
If the vectors veca, vecb, vecc are non ...

If the vectors `veca, vecb, vecc` are non -coplanar and `l,m,n` are distinct scalars such that
`[(lveca+mvecb+nvecc, lvecb+mvecc+nveca,lvecc+mveca+nvecb)]=0` then

A

`a) l + m + n=0`

B

b) roots of the equation `lx^(2) + mx + n =0` are equal

C

c)`l^(2)+m^(2) + n^(2) =0`

D

d)`l^(3) + m^(2) + n^(3) = 3 lmn `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given expression involving the vectors \(\vec{a}, \vec{b}, \vec{c}\) and the scalars \(l, m, n\). The expression is given as: \[ [(l\vec{a} + m\vec{b} + n\vec{c}, l\vec{b} + m\vec{c} + n\vec{a}, l\vec{c} + m\vec{a} + n\vec{b})] = 0 \] ### Step 1: Set up the determinant We can express the given condition in terms of a determinant of a matrix formed by the coefficients of the vectors. The determinant can be set up as follows: \[ D = \begin{vmatrix} l & m & n \\ n & l & m \\ m & n & l \end{vmatrix} \] ### Step 2: Calculate the determinant To calculate the determinant \(D\), we can use the formula for the determinant of a \(3 \times 3\) matrix: \[ D = a(ei - fh) - b(di - fg) + c(dh - eg) \] Substituting the values from our matrix: \[ D = l \begin{vmatrix} l & m \\ n & l \end{vmatrix} - m \begin{vmatrix} n & m \\ m & l \end{vmatrix} + n \begin{vmatrix} n & l \\ m & n \end{vmatrix} \] Calculating each of the \(2 \times 2\) determinants: 1. \(\begin{vmatrix} l & m \\ n & l \end{vmatrix} = l^2 - mn\) 2. \(\begin{vmatrix} n & m \\ m & l \end{vmatrix} = nl - m^2\) 3. \(\begin{vmatrix} n & l \\ m & n \end{vmatrix} = n^2 - ml\) Thus, we have: \[ D = l(l^2 - mn) - m(nl - m^2) + n(n^2 - ml) \] ### Step 3: Simplify the determinant Expanding this gives: \[ D = l^3 - lmn - mnl + m^3 + n^3 - nml \] Combining like terms, we get: \[ D = l^3 + m^3 + n^3 - 3lmn \] ### Step 4: Set the determinant to zero Since we are given that the determinant equals zero, we have: \[ l^3 + m^3 + n^3 - 3lmn = 0 \] ### Step 5: Use the identity for sums of cubes Using the identity for sums of cubes, we can rewrite this as: \[ (l + m + n)(l^2 + m^2 + n^2 - lm - mn - nl) = 0 \] ### Step 6: Analyze the factors Since \(l, m, n\) are distinct scalars, \(l + m + n\) cannot be zero. Therefore, we must have: \[ l^2 + m^2 + n^2 - lm - mn - nl = 0 \] This implies that the vectors are related in such a way that they form a specific geometric configuration. ### Conclusion Thus, we conclude that the condition leads to a specific relationship among the scalars \(l, m, n\).

To solve the problem, we need to analyze the given expression involving the vectors \(\vec{a}, \vec{b}, \vec{c}\) and the scalars \(l, m, n\). The expression is given as: \[ [(l\vec{a} + m\vec{b} + n\vec{c}, l\vec{b} + m\vec{c} + n\vec{a}, l\vec{c} + m\vec{a} + n\vec{b})] = 0 \] ### Step 1: Set up the determinant ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

If veca, vecb, vecc are non coplanar non null vectors such that [(veca, vecb, vecc)]=2 then {[(vecaxxvecb, vecbxxvecc, veccxxveca)]}^(2)=

If veca, vecb, vecc are non coplanar vectors and lamda is a real number, then [(lamda(veca+vecb), lamda^(2)vecb, lamdavecc)]=[(veca, vecb+vecc,vecb)] for

If veca, vecb,vecc are three non-coplanar vectors such that veca xx vecb=vecc,vecb xx vecc=veca,vecc xx veca=vecb , then the value of |veca|+|vecb|+|vecc| is

Statement 1: Any vector in space can be uniquely written as the linear combination of three non-coplanar vectors. Stetement 2: If veca, vecb, vecc are three non-coplanar vectors and vecr is any vector in space then [(veca,vecb, vecc)]vecc+[(vecb, vecc, vecr)]veca+[(vecc, veca, vecr)]vecb=[(veca, vecb, vecc)]vecr

If veca, vecb, vecc are non coplanar vectors and vecp, vecq, vecr are reciprocal vectors, then (lveca+mvecb+nvecc).(lvecp+mvecq+nvecr) is equal to

If the three vectors veca,vecb,vecc are non coplanar express each of vecbxxvecc, veccxxveca, vecaxxvecb in terms of veca,vecb,vecc .

If veca , vecb , vecc are non-coplanar vectors and lambda is a real number then [ lambda(veca+vecb) lambda^2vecb lambdavecc ] = [ veca vecb+vecc vecb ] for:

If veca, vecb, vecc are non-null non coplanar vectors, then [(veca-2vecb+vecc, vecb-2vecc+veca, vecc-2veca+vecb)]=

i. If veca, vecb and vecc are non-coplanar vectors, prove that vectors 3veca-7vecb-4vecc, 3veca-2vecb+vecc and veca+vecb+2vecc are coplanar.

If the vectors veca, vecb, and vecc are coplanar show that |(veca,vecb,vecc),(veca.veca, veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc)|=0

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. If the sides vec(AB) of an equilateral triangle ABC lying in the xy-pl...

    Text Solution

    |

  2. Let hata be a unit vector and hatb a non zero vector non parallel to v...

    Text Solution

    |

  3. veca ,vecb and vecc are unimodular and coplanar. A unit vector vecd is...

    Text Solution

    |

  4. If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc...

    Text Solution

    |

  5. Let veca and vecb be two non-collinear unit vectors. If vecu=veca-(vec...

    Text Solution

    |

  6. if veca xx vecb = vecc ,vecb xx vecc = veca , " where " vecc ne vec0 ...

    Text Solution

    |

  7. Let veca, vecb, and vecc be three non- coplanar vectors and vecd be a ...

    Text Solution

    |

  8. If vec a , vec b , a n d harr c are three unit vecrtors such that ...

    Text Solution

    |

  9. If in triangle ABC, vec(AB) = vecu/|vecu|-vecv/|vecv| and vec(AC) = (...

    Text Solution

    |

  10. [vecaxx vecb " " vecc xx vecd " " vecexx vecf] is equal to

    Text Solution

    |

  11. The scalars l and m such that lveca + m vecb =vecc, " where " veca, ve...

    Text Solution

    |

  12. If (veca xx vecb) xx (vecc xx vecd) . (veca xx vecd) =0 then which of ...

    Text Solution

    |

  13. A ,B ,Ca n dD are four points such that vec A B=m(2 hat i-6 hat j+2 h...

    Text Solution

    |

  14. If the vectors veca, vecb, vecc are non -coplanar and l,m,n are distin...

    Text Solution

    |

  15. Let vec(alpha)=ahati+bhatj+chatk, vec(beta)=bhati+chatj+ahatk and vec(...

    Text Solution

    |

  16. if vectors vecA = 2hati + 3hatj + 4hatk , vecB = hati + hatj + 5hatk a...

    Text Solution

    |

  17. If veca=xhati + y hatj + zhatk, vecb= yhati + zhatj + xhatk and vecc=...

    Text Solution

    |

  18. If veca xx (vecbxx vecc)= (veca xx vecb)xxvecc then

    Text Solution

    |

  19. A vector vecd is equally inclined to three vectors veca=hati-hatj+hatk...

    Text Solution

    |

  20. A parallelogram is constructed on the vectors veca=3vecalpha-vecbeta, ...

    Text Solution

    |