Home
Class 11
MATHS
Let vec(alpha)=ahati+bhatj+chatk, vec(be...

Let `vec(alpha)=ahati+bhatj+chatk, vec(beta)=bhati+chatj+ahatk` and `vec(gamma)=chati+ahatj+bhatk` be three coplnar vectors with `a!=b`, and `vecv=hati+hatj+hatk`. Then `vecv` is perpendicular to

A

`vecalpha`

B

`vecbeta`

C

`vecgamma`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to determine which vectors the vector \( \vec{v} = \hat{i} + \hat{j} + \hat{k} \) is perpendicular to among the given coplanar vectors \( \vec{\alpha}, \vec{\beta}, \) and \( \vec{\gamma} \). ### Step 1: Write down the vectors Given: - \( \vec{\alpha} = a \hat{i} + b \hat{j} + c \hat{k} \) - \( \vec{\beta} = b \hat{i} + c \hat{j} + a \hat{k} \) - \( \vec{\gamma} = c \hat{i} + a \hat{j} + b \hat{k} \) - \( \vec{v} = \hat{i} + \hat{j} + \hat{k} \) ### Step 2: Check for coplanarity The vectors \( \vec{\alpha}, \vec{\beta}, \) and \( \vec{\gamma} \) are coplanar if the determinant of the matrix formed by these vectors is zero. The determinant is given by: \[ \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = 0 \] ### Step 3: Calculate the determinant Calculating the determinant: \[ = a \begin{vmatrix} c & a \\ a & b \end{vmatrix} - b \begin{vmatrix} b & a \\ c & b \end{vmatrix} + c \begin{vmatrix} b & c \\ c & a \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \( \begin{vmatrix} c & a \\ a & b \end{vmatrix} = cb - a^2 \) 2. \( \begin{vmatrix} b & a \\ c & b \end{vmatrix} = bb - ac = b^2 - ac \) 3. \( \begin{vmatrix} b & c \\ c & a \end{vmatrix} = ba - c^2 \) Putting it all together: \[ = a(cb - a^2) - b(b^2 - ac) + c(ba - c^2) \] Expanding this gives: \[ = acb - a^3 - b^3 + abc + abc - c^3 \] Combining like terms yields: \[ = 3abc - (a^3 + b^3 + c^3) = 0 \] ### Step 4: Use the condition \( a + b + c = 0 \) From the determinant condition, we can derive that: \[ a + b + c = 0 \] ### Step 5: Check perpendicularity with \( \vec{v} \) To check if \( \vec{v} \) is perpendicular to \( \vec{\alpha}, \vec{\beta}, \) and \( \vec{\gamma} \), we compute the dot products: 1. **Dot product with \( \vec{\alpha} \)**: \[ \vec{v} \cdot \vec{\alpha} = (\hat{i} + \hat{j} + \hat{k}) \cdot (a \hat{i} + b \hat{j} + c \hat{k}) = a + b + c = 0 \] 2. **Dot product with \( \vec{\beta} \)**: \[ \vec{v} \cdot \vec{\beta} = (\hat{i} + \hat{j} + \hat{k}) \cdot (b \hat{i} + c \hat{j} + a \hat{k}) = b + c + a = 0 \] 3. **Dot product with \( \vec{\gamma} \)**: \[ \vec{v} \cdot \vec{\gamma} = (\hat{i} + \hat{j} + \hat{k}) \cdot (c \hat{i} + a \hat{j} + b \hat{k}) = c + a + b = 0 \] ### Conclusion Since \( \vec{v} \) is perpendicular to \( \vec{\alpha}, \vec{\beta}, \) and \( \vec{\gamma} \): \[ \vec{v} \text{ is perpendicular to } \vec{\alpha}, \vec{\beta}, \text{ and } \vec{\gamma}. \]

To solve the problem step by step, we need to determine which vectors the vector \( \vec{v} = \hat{i} + \hat{j} + \hat{k} \) is perpendicular to among the given coplanar vectors \( \vec{\alpha}, \vec{\beta}, \) and \( \vec{\gamma} \). ### Step 1: Write down the vectors Given: - \( \vec{\alpha} = a \hat{i} + b \hat{j} + c \hat{k} \) - \( \vec{\beta} = b \hat{i} + c \hat{j} + a \hat{k} \) - \( \vec{\gamma} = c \hat{i} + a \hat{j} + b \hat{k} \) - \( \vec{v} = \hat{i} + \hat{j} + \hat{k} \) ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

Let veca = 2hati+lambda_1 hatj+3hatk , vec(b)=4hati+(3-lambda_2) hatj+6hatk and vec(c)=3hati+6hatj+(lambda_3-1)hatk be three vectors such that vec(b)=2 vec(a) and vec(a) is perpendicular to vec(c) then a possible value of ((lambda)_1,(lambda)_2,(lambda)_3) is: (a) (1,3,1) (b) ((-1/2),4,0) (c) (1,5,1) (d) ((1/2), 4, -2)

If vec(OA)=2hati-hatj+hatk, vec(OB)=hati-3hatj-5hatk and vec(OC)=3hati-3hatj-3hatk then show that CB is perpendicular to AC.

Let veca=hati + hatj +hatk,vecb=hati- hatj + hatk and vecc= hati-hatj - hatk be three vectors. A vectors vecv in the plane of veca and vecb , whose projection on vecc is 1/sqrt3 is given by

Let a be a real number and vec alpha = hati +2hatj, vec beta=2hati+a hatj+10 hatk, vec gamma=12hati+20hatj+a hatk be three vectors, then vec alpha, vec beta and vec gamma are linearly independent for :

If vec(alpha)=2hati+3hatj-hatk, vec(beta)=-hati+2hatj-4hatk, vecgamma=hati+hatj+hatk , then (vec(alpha)xxvec(beta)).(vec(alpha)xxvec(gamma)) is equal to

Given two vectors veca=-hati + 2hatj + 2hatk and vecb =- 2hati + hatj + 2hatk find |vec a xx vec b|

If the vectors 2ahati+bhatj+chatk, bhati+chatj+2ahatk and chati+2ahatj+bhatk are coplanar vectors, then the straight lines ax+by+c=0 will always pass through the point

Consider three vectors vecp=hati+hatj+hatk,vecq=2hati+4hatj-hatk and vecr=hati+hatj+3hatk and let vecs be a unit vector, then vecp,vecq and vecr are

The vectors 2hati+hatj-4hatk and ahati+bhatj+chatk are perpendicular, if

Let vec a=4hati+5hatj-hatk, vecb = hati -4hatj+5hatk and vec c=3hati+hatj-hatk . Find a vector vec d which is perpendicular to both vec c and vec b and vec d.vec a=21

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. If the sides vec(AB) of an equilateral triangle ABC lying in the xy-pl...

    Text Solution

    |

  2. Let hata be a unit vector and hatb a non zero vector non parallel to v...

    Text Solution

    |

  3. veca ,vecb and vecc are unimodular and coplanar. A unit vector vecd is...

    Text Solution

    |

  4. If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc...

    Text Solution

    |

  5. Let veca and vecb be two non-collinear unit vectors. If vecu=veca-(vec...

    Text Solution

    |

  6. if veca xx vecb = vecc ,vecb xx vecc = veca , " where " vecc ne vec0 ...

    Text Solution

    |

  7. Let veca, vecb, and vecc be three non- coplanar vectors and vecd be a ...

    Text Solution

    |

  8. If vec a , vec b , a n d harr c are three unit vecrtors such that ...

    Text Solution

    |

  9. If in triangle ABC, vec(AB) = vecu/|vecu|-vecv/|vecv| and vec(AC) = (...

    Text Solution

    |

  10. [vecaxx vecb " " vecc xx vecd " " vecexx vecf] is equal to

    Text Solution

    |

  11. The scalars l and m such that lveca + m vecb =vecc, " where " veca, ve...

    Text Solution

    |

  12. If (veca xx vecb) xx (vecc xx vecd) . (veca xx vecd) =0 then which of ...

    Text Solution

    |

  13. A ,B ,Ca n dD are four points such that vec A B=m(2 hat i-6 hat j+2 h...

    Text Solution

    |

  14. If the vectors veca, vecb, vecc are non -coplanar and l,m,n are distin...

    Text Solution

    |

  15. Let vec(alpha)=ahati+bhatj+chatk, vec(beta)=bhati+chatj+ahatk and vec(...

    Text Solution

    |

  16. if vectors vecA = 2hati + 3hatj + 4hatk , vecB = hati + hatj + 5hatk a...

    Text Solution

    |

  17. If veca=xhati + y hatj + zhatk, vecb= yhati + zhatj + xhatk and vecc=...

    Text Solution

    |

  18. If veca xx (vecbxx vecc)= (veca xx vecb)xxvecc then

    Text Solution

    |

  19. A vector vecd is equally inclined to three vectors veca=hati-hatj+hatk...

    Text Solution

    |

  20. A parallelogram is constructed on the vectors veca=3vecalpha-vecbeta, ...

    Text Solution

    |