Home
Class 11
MATHS
A parallelogram is constructed on the ve...

A parallelogram is constructed on the vectors `veca=3vecalpha-vecbeta, vecb=vecalpha+3vecbeta. If |vecalpha|=|vecbeta|=2` and angle between `vecalpha and vecbeta is pi/3` then the length of a diagonal of the parallelogram is

A

`4sqrt5`

B

`4sqrt3`

C

`4sqrt7`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the length of a diagonal of the parallelogram constructed on the vectors \(\vec{a} = 3\vec{\alpha} - \vec{\beta}\) and \(\vec{b} = \vec{\alpha} + 3\vec{\beta}\), we will follow these steps: ### Step 1: Find the vectors \(\vec{a}\) and \(\vec{b}\) Given: \[ \vec{a} = 3\vec{\alpha} - \vec{\beta} \] \[ \vec{b} = \vec{\alpha} + 3\vec{\beta} \] ### Step 2: Calculate the magnitudes of \(\vec{\alpha}\) and \(\vec{\beta}\) We know: \[ |\vec{\alpha}| = |\vec{\beta}| = 2 \] Thus: \[ |\vec{\alpha}|^2 = 4 \quad \text{and} \quad |\vec{\beta}|^2 = 4 \] ### Step 3: Find the angle between \(\vec{\alpha}\) and \(\vec{\beta}\) The angle between the vectors is given as \(\theta = \frac{\pi}{3}\). We can use this to find the cosine of the angle: \[ \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \] ### Step 4: Calculate \(|\vec{a}|\) and \(|\vec{b}|\) To find \(|\vec{a}|\): \[ |\vec{a}|^2 = |3\vec{\alpha} - \vec{\beta}|^2 = |3\vec{\alpha}|^2 + |\vec{\beta}|^2 - 2|3\vec{\alpha}||\vec{\beta}|\cos\theta \] \[ = 9|\vec{\alpha}|^2 + |\vec{\beta}|^2 - 2 \cdot 3|\vec{\alpha}||\vec{\beta}|\cos\left(\frac{\pi}{3}\right) \] \[ = 9 \cdot 4 + 4 - 2 \cdot 3 \cdot 2 \cdot \frac{1}{2} \] \[ = 36 + 4 - 6 = 34 \] Thus, \(|\vec{a}| = \sqrt{34}\). To find \(|\vec{b}|\): \[ |\vec{b}|^2 = |\vec{\alpha} + 3\vec{\beta}|^2 = |\vec{\alpha}|^2 + |3\vec{\beta}|^2 + 2|\vec{\alpha}||3\vec{\beta}|\cos\theta \] \[ = 4 + 9 \cdot 4 + 2 \cdot 2 \cdot 3 \cdot \frac{1}{2} \] \[ = 4 + 36 + 6 = 46 \] Thus, \(|\vec{b}| = \sqrt{46}\). ### Step 5: Calculate the diagonal vectors The diagonals of the parallelogram are given by: \[ \vec{d_1} = \vec{a} + \vec{b} \quad \text{and} \quad \vec{d_2} = \vec{a} - \vec{b} \] ### Step 6: Calculate \(|\vec{d_1}|\) \[ |\vec{d_1}|^2 = |\vec{a} + \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + 2|\vec{a}||\vec{b}|\cos\theta \] \[ = 34 + 46 + 2 \cdot \sqrt{34} \cdot \sqrt{46} \cdot \frac{1}{2} \] \[ = 80 + \sqrt{34 \cdot 46} \] Calculating \(\sqrt{34 \cdot 46}\): \[ 34 \cdot 46 = 1564 \] Thus: \[ |\vec{d_1}|^2 = 80 + \frac{\sqrt{1564}}{2} \] ### Step 7: Calculate \(|\vec{d_2}|\) \[ |\vec{d_2}|^2 = |\vec{a} - \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 - 2|\vec{a}||\vec{b}|\cos\theta \] \[ = 34 + 46 - 2 \cdot \sqrt{34} \cdot \sqrt{46} \cdot \frac{1}{2} \] \[ = 80 - \sqrt{1564} \] ### Step 8: Final Calculation of Diagonal Lengths Now, we can find the lengths of the diagonals: \[ |\vec{d_1}| = \sqrt{80 + \sqrt{1564}} \quad \text{and} \quad |\vec{d_2}| = \sqrt{80 - \sqrt{1564}} \] ### Conclusion The length of the diagonal of the parallelogram is given by either \(|\vec{d_1}|\) or \(|\vec{d_2}|\). ---

To find the length of a diagonal of the parallelogram constructed on the vectors \(\vec{a} = 3\vec{\alpha} - \vec{\beta}\) and \(\vec{b} = \vec{\alpha} + 3\vec{\beta}\), we will follow these steps: ### Step 1: Find the vectors \(\vec{a}\) and \(\vec{b}\) Given: \[ \vec{a} = 3\vec{\alpha} - \vec{\beta} \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

Consider a parallelogram constructed on the vectors vecA=5vecp+2vecq and vecB=vecp-3vecq . If |vecp|=2, |vecq|=5 , the angle between vecp and vecq is (pi)/(3) and the length of the smallest diagonal of the parallelogram is k units, then the value of k^(2) is equal to

IF |veca|=sqrt(3), |vecb|=2 and |veca-vecb|=3 find the angle between veca and vecb .

Three vectors veca,vecb,vecc are such that veca xx vecb=4(veca xx vecc) and |veca|=|vecb|=1 and |vecc|=1/4 . If the angle between vecb and vecc is pi/3 then vecb is

If angle between veca and vecb is pi/3 , then angle between veca and -3vecb is

A parallelogram is constructed on 3veca+vecb and veca-4vecb, where |veca|=6 and |vecb|=8 and veca and vecb are anti parallel then the length of the longer diagonal is (A) 40 (B) 64 (C) 32 (D) 48

A parallelogram is constructed on 3veca+vecb and veca-4vecb, where |veca|=6 and |vecb|=8 and veca and vecb are anti parallel then the length of the longer diagonal is (A) 40 (B) 64 (C) 32 (D) 48

If veca and vecb are unit vectors such that (veca +vecb). (2veca + 3vecb)xx(3veca - 2vecb)=vec0 then angle between veca and vecb is

If veca,vecb are two unit vectors such that |veca + vecb| = 2sqrt3 and |veca -vecb|=6 then the angle between veca and vecb , is

Let veca, vecb, vecc be three unit vectors and veca.vecb=veca.vecc=0 . If the angle between vecb and vecc is pi/3 then find the value of |[veca vecb vecc]|

Let the vectors veca and vecb be such that |veca|=3and|vecb|=sqrt2/3"then|" vecaxxvecb is a unit vector. If the angle between veca and vecb is ?

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. If the sides vec(AB) of an equilateral triangle ABC lying in the xy-pl...

    Text Solution

    |

  2. Let hata be a unit vector and hatb a non zero vector non parallel to v...

    Text Solution

    |

  3. veca ,vecb and vecc are unimodular and coplanar. A unit vector vecd is...

    Text Solution

    |

  4. If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc...

    Text Solution

    |

  5. Let veca and vecb be two non-collinear unit vectors. If vecu=veca-(vec...

    Text Solution

    |

  6. if veca xx vecb = vecc ,vecb xx vecc = veca , " where " vecc ne vec0 ...

    Text Solution

    |

  7. Let veca, vecb, and vecc be three non- coplanar vectors and vecd be a ...

    Text Solution

    |

  8. If vec a , vec b , a n d harr c are three unit vecrtors such that ...

    Text Solution

    |

  9. If in triangle ABC, vec(AB) = vecu/|vecu|-vecv/|vecv| and vec(AC) = (...

    Text Solution

    |

  10. [vecaxx vecb " " vecc xx vecd " " vecexx vecf] is equal to

    Text Solution

    |

  11. The scalars l and m such that lveca + m vecb =vecc, " where " veca, ve...

    Text Solution

    |

  12. If (veca xx vecb) xx (vecc xx vecd) . (veca xx vecd) =0 then which of ...

    Text Solution

    |

  13. A ,B ,Ca n dD are four points such that vec A B=m(2 hat i-6 hat j+2 h...

    Text Solution

    |

  14. If the vectors veca, vecb, vecc are non -coplanar and l,m,n are distin...

    Text Solution

    |

  15. Let vec(alpha)=ahati+bhatj+chatk, vec(beta)=bhati+chatj+ahatk and vec(...

    Text Solution

    |

  16. if vectors vecA = 2hati + 3hatj + 4hatk , vecB = hati + hatj + 5hatk a...

    Text Solution

    |

  17. If veca=xhati + y hatj + zhatk, vecb= yhati + zhatj + xhatk and vecc=...

    Text Solution

    |

  18. If veca xx (vecbxx vecc)= (veca xx vecb)xxvecc then

    Text Solution

    |

  19. A vector vecd is equally inclined to three vectors veca=hati-hatj+hatk...

    Text Solution

    |

  20. A parallelogram is constructed on the vectors veca=3vecalpha-vecbeta, ...

    Text Solution

    |