Home
Class 11
MATHS
Vectors vecx,vecy,vecz each of magnitude...

Vectors `vecx,vecy,vecz` each of magnitude `sqrt(2)` make angles of `60^0` with each other. If `vecx xx (vecyxxvecz) = veca, vecy xx (veczxxvecx) = vecb` and `vecx xx vecy = vecc`. Find `vecx, vecy, vecz` in terms of `veca, vecb, vecc`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will find the vectors \(\vec{x}, \vec{y}, \vec{z}\) in terms of the vectors \(\vec{a}, \vec{b}, \vec{c}\) given the conditions. ### Step 1: Understand the Magnitudes and Angles Given that the magnitudes of \(\vec{x}, \vec{y}, \vec{z}\) are \(\sqrt{2}\) and they make angles of \(60^\circ\) with each other, we can calculate the dot products: \[ \vec{x} \cdot \vec{x} = \vec{y} \cdot \vec{y} = \vec{z} \cdot \vec{z} = (\sqrt{2})^2 = 2 \] \[ \vec{x} \cdot \vec{y} = \vec{y} \cdot \vec{z} = \vec{z} \cdot \vec{x} = \sqrt{2} \cdot \sqrt{2} \cdot \cos(60^\circ) = 1 \] ### Step 2: Set Up the Cross Product Equations From the problem statement, we have: 1. \(\vec{x} \times (\vec{y} \times \vec{z}) = \vec{a}\) 2. \(\vec{y} \times (\vec{z} \times \vec{x}) = \vec{b}\) 3. \(\vec{x} \times \vec{y} = \vec{c}\) ### Step 3: Expand the First Cross Product Using the vector triple product identity, we can expand the first equation: \[ \vec{x} \times (\vec{y} \times \vec{z}) = (\vec{x} \cdot \vec{z}) \vec{y} - (\vec{x} \cdot \vec{y}) \vec{z} \] Substituting the known dot products: \[ \vec{a} = (1) \vec{y} - (1) \vec{z} \implies \vec{y} - \vec{z} = \vec{a} \quad \text{(Equation 1)} \] ### Step 4: Expand the Second Cross Product Now, expand the second equation: \[ \vec{y} \times (\vec{z} \times \vec{x}) = (\vec{y} \cdot \vec{x}) \vec{z} - (\vec{y} \cdot \vec{z}) \vec{x} \] Substituting the known dot products: \[ \vec{b} = (1) \vec{z} - (1) \vec{x} \implies \vec{z} - \vec{x} = \vec{b} \quad \text{(Equation 2)} \] ### Step 5: Use the Third Equation The third equation is: \[ \vec{x} \times \vec{y} = \vec{c} \quad \text{(Equation 3)} \] ### Step 6: Solve for \(\vec{x}\) From Equation 1: \[ \vec{y} = \vec{a} + \vec{z} \] Substituting \(\vec{y}\) into Equation 2: \[ \vec{z} - \vec{x} = \vec{b} \implies \vec{z} = \vec{x} + \vec{b} \] Substituting \(\vec{z}\) back into the expression for \(\vec{y}\): \[ \vec{y} = \vec{a} + (\vec{x} + \vec{b}) = \vec{a} + \vec{x} + \vec{b} \] ### Step 7: Substitute to Find \(\vec{z}\) Now we have: \[ \vec{y} = \vec{a} + \vec{x} + \vec{b} \] Substituting this into Equation 3 gives us: \[ \vec{x} \times (\vec{a} + \vec{x} + \vec{b}) = \vec{c} \] This simplifies to: \[ \vec{x} \times \vec{a} + \vec{x} \times \vec{x} + \vec{x} \times \vec{b} = \vec{c} \] Since \(\vec{x} \times \vec{x} = \vec{0}\), we have: \[ \vec{x} \times \vec{a} + \vec{x} \times \vec{b} = \vec{c} \] ### Step 8: Solve for \(\vec{x}, \vec{y}, \vec{z}\) From the previous equations: 1. \(\vec{x} = \vec{a} \times \vec{c}\) 2. \(\vec{z} = \vec{b} + \vec{a} \times \vec{c}\) 3. \(\vec{y} = \vec{a} + \vec{b} + \vec{a} \times \vec{c}\) ### Final Result Thus, we have: \[ \vec{x} = \vec{a} \times \vec{c}, \quad \vec{y} = \vec{a} + \vec{b} + \vec{a} \times \vec{c}, \quad \vec{z} = \vec{b} + \vec{a} \times \vec{c} \]

To solve the problem, we will find the vectors \(\vec{x}, \vec{y}, \vec{z}\) in terms of the vectors \(\vec{a}, \vec{b}, \vec{c}\) given the conditions. ### Step 1: Understand the Magnitudes and Angles Given that the magnitudes of \(\vec{x}, \vec{y}, \vec{z}\) are \(\sqrt{2}\) and they make angles of \(60^\circ\) with each other, we can calculate the dot products: \[ \vec{x} \cdot \vec{x} = \vec{y} \cdot \vec{y} = \vec{z} \cdot \vec{z} = (\sqrt{2})^2 = 2 \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Martrix - match type|10 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Integer type|17 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

Vectors vecx,vecy,vecz each of magnitude sqrt(2) make angles of 60^0 with each other. If vecxxx(vecyxx(veczxxvecx)=vecb nd vecxxxvecy=vecc, find vecx, vecy, vecz in terms of veca,vecb and vecc .

If vecx xxvecy=veca, vecy xx vecz=vecb, vecx.vecb=gamma, vecx.vecy=1 and vecy.vecz=1 then find x,y,z in terms of veca,vecb and gamma .

If vecx * xvecy=veca, vecy xx vecz=vecb, vecx.vecb=gamma, vecx.vecy=1 and vecy.vecz=1 then find x,y,z in terms of veca,vecb and gamma.

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .

if veca + vecb + vecc=0 , then show that veca xx vecb = vecb xx vecc = vecc xx veca .

If vecx.veca=0vecx.vecb=0 and vecx.vecc=0 for some non zero vector vecx then show that [veca vecb vecc]=0

If vecx.veca=0vecx.vecb=0 and vecx.vecc=0 for some non zero vector vecx then show that [veca vecb vecc]=0

given that veca. vecb = veca.vecc, veca xx vecb= veca xx vecc and veca is not a zero vector. Show that vecb=vecc .

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Comprehension type
  1. Let vecu, vecv and vecw be three unit vectors such that vecu + vecv + ...

    Text Solution

    |

  2. Let vecu, vecv and vecw be three unit vectors such that vecu + vecv + ...

    Text Solution

    |

  3. Vectors vecx,vecy,vecz each of magnitude sqrt(2) make angles of 60^0 w...

    Text Solution

    |

  4. Vectors vecx,vecy,vecz each of magnitude sqrt(2) make angles of 60^0 w...

    Text Solution

    |

  5. Vectors vecx,vecy,vecz each of magnitude sqrt(2) make angles of 60^0 w...

    Text Solution

    |

  6. If vecx * xvecy=veca, vecy xx vecz=vecb, vecx.vecb=gamma, vecx.vecy=1 ...

    Text Solution

    |

  7. Vectors vecx,vecy,vecz each of magnitude sqrt(2) make angles of 60^0 w...

    Text Solution

    |

  8. If vecx * xvecy=veca, vecy xx vecz=vecb, vecx.vecb=gamma, vecx.vecy=1 ...

    Text Solution

    |

  9. Given two orthogonal vectors vecA and vecB each of length unity. Let v...

    Text Solution

    |

  10. Given two orthogonal vectors vecA and vecB each of length unity. Let v...

    Text Solution

    |

  11. Given two orthogonal vectors vecA and VecB each of length unity. Let v...

    Text Solution

    |

  12. Let veca= 2 hati + 3hatj - 6hatk, vecb = 2hati - 3hatj + 6hatk and vec...

    Text Solution

    |

  13. Let veca= 2 hati + 3hatj - 6hatk, vecb = 2hati - 3hatj + 6hatk and vec...

    Text Solution

    |

  14. Let veca= 2 hati + 3hatj - 6hatk, vecb = 2hati - 3hatj + 6hatk and vec...

    Text Solution

    |

  15. Consider a triangular pyramid ABCD the position vectors of whose angul...

    Text Solution

    |

  16. Consider a triangular pyramid ABCD the position vectors of whone agula...

    Text Solution

    |

  17. Consider a triangular pyramid ABCD the position vectors of whose agula...

    Text Solution

    |

  18. Vertices of a parallelogram taken in order are A, ( 2,-1,4) , B (1,0,-...

    Text Solution

    |

  19. Vertices of a parallelogram taken in order are A( 2,-1,4)B(1,0,-1...

    Text Solution

    |

  20. Vertices of a parallelogram taken in order are A( 2,-1,4)B(1,0,-1...

    Text Solution

    |