Home
Class 11
MATHS
Vectors vecx,vecy,vecz each of magnitude...

Vectors `vecx,vecy,vecz` each of magnitude `sqrt(2)` make angles of `60^0` with each other. If `vecx`` xx(vecyxxvecz)=veca` ,`vecy`` xx(veczxxvecx)=vecb` and `vecxxxvecy=vecc`, find vecx, vecy, vecz` in terms of `veca,vecb and vecc`.

A

`1/2[(veca-vecc) xx vecc-vecb+veca]`

B

`1/2[(veca-vecb) xx vecc+vecb-veca]`

C

`1/2[veccxx(veca-vecb) + vecb +veca]`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to express the vectors \(\vec{x}\), \(\vec{y}\), and \(\vec{z}\) in terms of the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). We start by using the given conditions and the properties of vector operations. ### Step-by-step Solution: 1. **Understanding the Magnitudes and Angles**: Each vector \(\vec{x}\), \(\vec{y}\), and \(\vec{z}\) has a magnitude of \(\sqrt{2}\) and makes angles of \(60^\circ\) with each other. Thus, we can calculate the dot products: \[ \vec{x} \cdot \vec{y} = |\vec{x}| |\vec{y}| \cos(60^\circ) = \sqrt{2} \cdot \sqrt{2} \cdot \frac{1}{2} = 1. \] Similarly, \(\vec{y} \cdot \vec{z} = 1\) and \(\vec{z} \cdot \vec{x} = 1\). 2. **Setting Up the Cross Product Equations**: We have: \[ \vec{x} \times (\vec{y} \times \vec{z}) = \vec{a}, \] \[ \vec{y} \times (\vec{z} \times \vec{x}) = \vec{b}, \] \[ \vec{x} \times \vec{y} = \vec{c}. \] 3. **Using the Vector Triple Product Identity**: The vector triple product identity states that: \[ \vec{u} \times (\vec{v} \times \vec{w}) = (\vec{u} \cdot \vec{w}) \vec{v} - (\vec{u} \cdot \vec{v}) \vec{w}. \] Applying this to the first equation: \[ \vec{x} \times (\vec{y} \times \vec{z}) = (\vec{x} \cdot \vec{z}) \vec{y} - (\vec{x} \cdot \vec{y}) \vec{z} = 1 \cdot \vec{y} - 1 \cdot \vec{z} = \vec{y} - \vec{z}. \] Therefore, we have: \[ \vec{y} - \vec{z} = \vec{a} \quad \text{(Equation 1)}. \] 4. **Applying the Second Equation**: For the second equation: \[ \vec{y} \times (\vec{z} \times \vec{x}) = (\vec{y} \cdot \vec{x}) \vec{z} - (\vec{y} \cdot \vec{z}) \vec{x} = 1 \cdot \vec{z} - 1 \cdot \vec{x} = \vec{z} - \vec{x}. \] Thus, we have: \[ \vec{z} - \vec{x} = \vec{b} \quad \text{(Equation 2)}. \] 5. **Using the Third Equation**: From the third equation: \[ \vec{x} \times \vec{y} = \vec{c}. \] 6. **Expressing \(\vec{x}\), \(\vec{y}\), and \(\vec{z}\)**: From Equation 1, we can express \(\vec{z}\) in terms of \(\vec{y}\): \[ \vec{z} = \vec{y} - \vec{a}. \] Substituting this into Equation 2 gives: \[ \vec{y} - (\vec{y} - \vec{a}) = \vec{b} \implies \vec{a} = \vec{b}. \] Thus, we can express \(\vec{y}\) in terms of \(\vec{b}\) and \(\vec{a}\): \[ \vec{y} = \vec{b} + \vec{a}. \] Now substituting back to find \(\vec{x}\): \[ \vec{z} = \vec{b} + \vec{a} - \vec{a} = \vec{b}. \] Finally, substituting \(\vec{z}\) into the expression for \(\vec{y}\): \[ \vec{y} = \vec{b} + \vec{a} \quad \text{and} \quad \vec{x} = \vec{a} + \vec{c}. \] 7. **Final Expressions**: Therefore, we have: \[ \vec{x} = \vec{a} \times \vec{c}, \] \[ \vec{y} = \vec{a} + \vec{b} + \vec{a} \times \vec{c}, \] \[ \vec{z} = \vec{b} + \vec{a} \times \vec{c}. \] ### Summary of Results: - \(\vec{x} = \vec{a} \times \vec{c}\) - \(\vec{y} = \vec{a} + \vec{b} + \vec{a} \times \vec{c}\) - \(\vec{z} = \vec{b} + \vec{a} \times \vec{c}\)

To solve the problem, we need to express the vectors \(\vec{x}\), \(\vec{y}\), and \(\vec{z}\) in terms of the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). We start by using the given conditions and the properties of vector operations. ### Step-by-step Solution: 1. **Understanding the Magnitudes and Angles**: Each vector \(\vec{x}\), \(\vec{y}\), and \(\vec{z}\) has a magnitude of \(\sqrt{2}\) and makes angles of \(60^\circ\) with each other. Thus, we can calculate the dot products: \[ \vec{x} \cdot \vec{y} = |\vec{x}| |\vec{y}| \cos(60^\circ) = \sqrt{2} \cdot \sqrt{2} \cdot \frac{1}{2} = 1. ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Martrix - match type|10 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Integer type|17 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

Vectors vecx,vecy,vecz each of magnitude sqrt(2) make angles of 60^0 with each other. If vecx xx (vecyxxvecz) = veca, vecy xx (veczxxvecx) = vecb and vecx xx vecy = vecc . Find vecx, vecy, vecz in terms of veca, vecb, vecc .

Vectors vecx,vecy,vecz each of magnitude sqrt(2) make angles of 60^0 with each other. If vecx xx (vecyxxvecz) = veca, vecy xx (veczxxvecx) = vecb and vecx xx vecy = vecc . Find vecx, vecy, vecz in terms of veca, vecb, vecc .

If vecx xxvecy=veca, vecy xx vecz=vecb, vecx.vecb=gamma, vecx.vecy=1 and vecy.vecz=1 then find x,y,z in terms of veca,vecb and gamma .

If vecx * xvecy=veca, vecy xx vecz=vecb, vecx.vecb=gamma, vecx.vecy=1 and vecy.vecz=1 then find x,y,z in terms of veca,vecb and gamma.

If vecA=2veci-3vecj+7veck, vecB=veci+2veck and vecC=vecj-veck find vecA.(vecBxxvecC) .

If vecx.veca=0vecx.vecb=0 and vecx.vecc=0 for some non zero vector vecx then show that [veca vecb vecc]=0

If vecx.veca=0vecx.vecb=0 and vecx.vecc=0 for some non zero vector vecx then show that [veca vecb vecc]=0

If vecA=2veci+vecj-3veck vecB=veci-2vecj+veck and vecC=-veci+vecj-vec4k find vecAxx(vecBxxvecC)

If veca = 2veci+3vecj-veck, vecb =-veci+2vecj-4veck and vecc=veci + vecj + veck , then find the value of (veca xx vecb).(vecaxxvecc)

If veca = 2vecj+3vecj-veck, vecb =-veci+2vecj-4veck and vecc=veci + vecj + veck , then find the value of (veca xx vecb).(vecaxxvecc)

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Comprehension type
  1. Vectors vecx,vecy,vecz each of magnitude sqrt(2) make angles of 60^0 w...

    Text Solution

    |

  2. Vectors vecx,vecy,vecz each of magnitude sqrt(2) make angles of 60^0 w...

    Text Solution

    |

  3. Vectors vecx,vecy,vecz each of magnitude sqrt(2) make angles of 60^0 w...

    Text Solution

    |

  4. If vecx * xvecy=veca, vecy xx vecz=vecb, vecx.vecb=gamma, vecx.vecy=1 ...

    Text Solution

    |

  5. Vectors vecx,vecy,vecz each of magnitude sqrt(2) make angles of 60^0 w...

    Text Solution

    |

  6. If vecx * xvecy=veca, vecy xx vecz=vecb, vecx.vecb=gamma, vecx.vecy=1 ...

    Text Solution

    |

  7. Given two orthogonal vectors vecA and vecB each of length unity. Let v...

    Text Solution

    |

  8. Given two orthogonal vectors vecA and vecB each of length unity. Let v...

    Text Solution

    |

  9. Given two orthogonal vectors vecA and VecB each of length unity. Let v...

    Text Solution

    |

  10. Let veca= 2 hati + 3hatj - 6hatk, vecb = 2hati - 3hatj + 6hatk and vec...

    Text Solution

    |

  11. Let veca= 2 hati + 3hatj - 6hatk, vecb = 2hati - 3hatj + 6hatk and vec...

    Text Solution

    |

  12. Let veca= 2 hati + 3hatj - 6hatk, vecb = 2hati - 3hatj + 6hatk and vec...

    Text Solution

    |

  13. Consider a triangular pyramid ABCD the position vectors of whose angul...

    Text Solution

    |

  14. Consider a triangular pyramid ABCD the position vectors of whone agula...

    Text Solution

    |

  15. Consider a triangular pyramid ABCD the position vectors of whose agula...

    Text Solution

    |

  16. Vertices of a parallelogram taken in order are A, ( 2,-1,4) , B (1,0,-...

    Text Solution

    |

  17. Vertices of a parallelogram taken in order are A( 2,-1,4)B(1,0,-1...

    Text Solution

    |

  18. Vertices of a parallelogram taken in order are A( 2,-1,4)B(1,0,-1...

    Text Solution

    |

  19. Let vec(r) is a positive vector of a variable pont in cartesian OXY pl...

    Text Solution

    |

  20. Let vec(r) is a positive vector of a variable pont in cartesian OXY pl...

    Text Solution

    |