Home
Class 11
MATHS
If vecx * xvecy=veca, vecy xx vecz=vecb,...

If `vecx * xvecy=veca, vecy xx vecz=vecb, vecx.vecb=gamma, vecx.vecy=1 and vecy.vecz=1 ` then find x,y,z in terms of `veca,vecb and gamma.

A

`gamma/(|veca xxvecb|^(2))[veca+vecbxx(vecaxxvecb)]`

B

`gamma/(|veca xxvecb|^(2))[veca+vecb-vecaxx(vecaxxvecb)]`

C

`gamma/(|veca xxvecb|^(2))[veca+vecb+vecaxx(vecaxxvecb)]`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to express the vectors \( \vec{x}, \vec{y}, \vec{z} \) in terms of \( \vec{a}, \vec{b}, \) and \( \gamma \) based on the given equations. ### Step 1: Start with the given equations We have the following equations: 1. \( \vec{x} \times \vec{y} = \vec{a} \) (Equation 1) 2. \( \vec{y} \times \vec{z} = \vec{b} \) (Equation 2) 3. \( \vec{x} \cdot \vec{b} = \gamma \) (Equation 3) 4. \( \vec{x} \cdot \vec{y} = 1 \) (Equation 4) 5. \( \vec{y} \cdot \vec{z} = 1 \) (Equation 5) ### Step 2: Find \( \vec{y} \) From Equation 1, we can express \( \vec{y} \) in terms of \( \vec{x} \) and \( \vec{a} \): \[ \vec{y} = \frac{\vec{a} \times \vec{b}}{\gamma} \] This is derived from rearranging the cross product and using the properties of dot products. ### Step 3: Substitute \( \vec{y} \) into Equation 4 Using Equation 4, we can substitute \( \vec{y} \): \[ \vec{x} \cdot \left(\frac{\vec{a} \times \vec{b}}{\gamma}\right) = 1 \] This implies: \[ \vec{x} \cdot (\vec{a} \times \vec{b}) = \gamma \] ### Step 4: Find \( \vec{x} \) Now, we can express \( \vec{x} \) in terms of \( \vec{a} \) and \( \vec{b} \): \[ \vec{x} = \frac{\vec{a} \times \vec{b}}{\gamma} \] This gives us the first vector \( \vec{x} \). ### Step 5: Find \( \vec{z} \) Now, we can use Equation 2 to find \( \vec{z} \): \[ \vec{y} \times \vec{z} = \vec{b} \] Substituting \( \vec{y} \): \[ \left(\frac{\vec{a} \times \vec{b}}{\gamma}\right) \times \vec{z} = \vec{b} \] Rearranging gives us: \[ \vec{z} = \frac{\vec{b} \times \gamma}{\vec{a} \times \vec{b}} \] ### Final Expressions Thus, we have: \[ \vec{x} = \frac{\vec{a} \times \vec{b}}{\gamma}, \quad \vec{y} = \frac{\vec{a} \times \vec{b}}{\gamma}, \quad \vec{z} = \frac{\vec{b} \times \gamma}{\vec{a} \times \vec{b}} \] ### Summary of Results - \( \vec{x} = \frac{\vec{a} \times \vec{b}}{\gamma} \) - \( \vec{y} = \frac{\vec{a} \times \vec{b}}{\gamma} \) - \( \vec{z} = \frac{\vec{b} \times \gamma}{\vec{a} \times \vec{b}} \)

To solve the problem, we need to express the vectors \( \vec{x}, \vec{y}, \vec{z} \) in terms of \( \vec{a}, \vec{b}, \) and \( \gamma \) based on the given equations. ### Step 1: Start with the given equations We have the following equations: 1. \( \vec{x} \times \vec{y} = \vec{a} \) (Equation 1) 2. \( \vec{y} \times \vec{z} = \vec{b} \) (Equation 2) 3. \( \vec{x} \cdot \vec{b} = \gamma \) (Equation 3) 4. \( \vec{x} \cdot \vec{y} = 1 \) (Equation 4) ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Martrix - match type|10 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Integer type|17 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

If vecx xxvecy=veca, vecy xx vecz=vecb, vecx.vecb=gamma, vecx.vecy=1 and vecy.vecz=1 then find x,y,z in terms of veca,vecb and gamma .

Vectors vecx,vecy,vecz each of magnitude sqrt(2) make angles of 60^0 with each other. If vecx xx (vecyxxvecz) = veca, vecy xx (veczxxvecx) = vecb and vecx xx vecy = vecc . Find vecx, vecy, vecz in terms of veca, vecb, vecc .

Vectors vecx,vecy,vecz each of magnitude sqrt(2) make angles of 60^0 with each other. If vecx xx (vecyxxvecz) = veca, vecy xx (veczxxvecx) = vecb and vecx xx vecy = vecc . Find vecx, vecy, vecz in terms of veca, vecb, vecc .

If vecr.veca=0, vecr.vecb=1and [vecr vecavecb]=1,veca.vecbne0,(veca.vecb)^(2)-|veca|^(2)|vecb|^(2)=1, then find vecr in terms of veca and vecb .

Four vectors veca, vecb, vecc and vecx satisfy the relation (veca.vecx)vecb=vecc+vecx where vecb.veca ne 1 . The value of vecx in terms of veca, vecb and vecc is equal to

Vectors vecx,vecy,vecz each of magnitude sqrt(2) make angles of 60^0 with each other. If vecxxx(vecyxx(veczxxvecx)=vecb nd vecxxxvecy=vecc, find vecx, vecy, vecz in terms of veca,vecb and vecc .

If |veca|=|vecb|=|veca+vecb|=1 then find the value of |veca-vecb|

If veca = 2veci+3vecj-veck, vecb =-veci+2vecj-4veck and vecc=veci + vecj + veck , then find the value of (veca xx vecb).(vecaxxvecc)

If veca = 2vecj+3vecj-veck, vecb =-veci+2vecj-4veck and vecc=veci + vecj + veck , then find the value of (veca xx vecb).(vecaxxvecc)

If vecA=2veci+3vecj+4veck and vecB=4veci+3vecj+2veck, find vecAxxvecB .

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Comprehension type
  1. If vecx * xvecy=veca, vecy xx vecz=vecb, vecx.vecb=gamma, vecx.vecy=1 ...

    Text Solution

    |

  2. Vectors vecx,vecy,vecz each of magnitude sqrt(2) make angles of 60^0 w...

    Text Solution

    |

  3. If vecx * xvecy=veca, vecy xx vecz=vecb, vecx.vecb=gamma, vecx.vecy=1 ...

    Text Solution

    |

  4. Given two orthogonal vectors vecA and vecB each of length unity. Let v...

    Text Solution

    |

  5. Given two orthogonal vectors vecA and vecB each of length unity. Let v...

    Text Solution

    |

  6. Given two orthogonal vectors vecA and VecB each of length unity. Let v...

    Text Solution

    |

  7. Let veca= 2 hati + 3hatj - 6hatk, vecb = 2hati - 3hatj + 6hatk and vec...

    Text Solution

    |

  8. Let veca= 2 hati + 3hatj - 6hatk, vecb = 2hati - 3hatj + 6hatk and vec...

    Text Solution

    |

  9. Let veca= 2 hati + 3hatj - 6hatk, vecb = 2hati - 3hatj + 6hatk and vec...

    Text Solution

    |

  10. Consider a triangular pyramid ABCD the position vectors of whose angul...

    Text Solution

    |

  11. Consider a triangular pyramid ABCD the position vectors of whone agula...

    Text Solution

    |

  12. Consider a triangular pyramid ABCD the position vectors of whose agula...

    Text Solution

    |

  13. Vertices of a parallelogram taken in order are A, ( 2,-1,4) , B (1,0,-...

    Text Solution

    |

  14. Vertices of a parallelogram taken in order are A( 2,-1,4)B(1,0,-1...

    Text Solution

    |

  15. Vertices of a parallelogram taken in order are A( 2,-1,4)B(1,0,-1...

    Text Solution

    |

  16. Let vec(r) is a positive vector of a variable pont in cartesian OXY pl...

    Text Solution

    |

  17. Let vec(r) is a positive vector of a variable pont in cartesian OXY pl...

    Text Solution

    |

  18. Let vec(r) is a positive vector of a variable pont in cartesian OXY pl...

    Text Solution

    |

  19. Ab, AC and AD are three adjacent edges of a parallelpiped. The diagona...

    Text Solution

    |

  20. Ab, AC and AD are three adjacent edges of a parallelpiped. The diagona...

    Text Solution

    |