Home
Class 11
MATHS
Let veca= 2 hati + 3hatj - 6hatk, vecb =...

Let `veca= 2 hati + 3hatj - 6hatk, vecb = 2hati - 3hatj + 6hatk and vecc = -2 hati + 3hatj + 6hatk`. Let `veca_(1)` be the projection of `veca` on `vecb and veca_(2)` be the projection of `veca_(1)` on `vecc` . Then
`veca_(2)` is equal to

A

(a) `943/49 (2 hati - 3hatj - 6hatk)`

B

(b) `943/(49^(2)) (2 hati - 3hatj - 6hatk)`

C

(c) `943/49 (-2 hati + 3hatj + 6hatk)`

D

(d) `943/(49^(2)) (-2 hati + 3hatj + 6hatk)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will find the projection of vector \(\vec{a}\) onto vector \(\vec{b}\) to get \(\vec{a_1}\), and then project \(\vec{a_1}\) onto vector \(\vec{c}\) to find \(\vec{a_2}\). ### Step 1: Define the vectors Given: \[ \vec{a} = 2\hat{i} + 3\hat{j} - 6\hat{k} \] \[ \vec{b} = 2\hat{i} - 3\hat{j} + 6\hat{k} \] \[ \vec{c} = -2\hat{i} + 3\hat{j} + 6\hat{k} \] ### Step 2: Calculate the dot product \(\vec{a} \cdot \vec{b}\) \[ \vec{a} \cdot \vec{b} = (2)(2) + (3)(-3) + (-6)(6) \] \[ = 4 - 9 - 36 = -41 \] ### Step 3: Calculate the magnitude of \(\vec{b}\) \[ |\vec{b}|^2 = (2)^2 + (-3)^2 + (6)^2 = 4 + 9 + 36 = 49 \] ### Step 4: Calculate the projection \(\vec{a_1}\) of \(\vec{a}\) onto \(\vec{b}\) The formula for projection is: \[ \vec{a_1} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2} \vec{b} \] Substituting the values: \[ \vec{a_1} = \frac{-41}{49} \vec{b} \] \[ = \frac{-41}{49} (2\hat{i} - 3\hat{j} + 6\hat{k}) = \left(\frac{-82}{49}\hat{i} + \frac{123}{49}\hat{j} - \frac{246}{49}\hat{k}\right) \] ### Step 5: Calculate the dot product \(\vec{a_1} \cdot \vec{c}\) \[ \vec{a_1} \cdot \vec{c} = \left(\frac{-82}{49}\right)(-2) + \left(\frac{123}{49}\right)(3) + \left(\frac{-246}{49}\right)(6) \] \[ = \frac{164}{49} + \frac{369}{49} - \frac{1476}{49} \] \[ = \frac{164 + 369 - 1476}{49} = \frac{-943}{49} \] ### Step 6: Calculate the magnitude of \(\vec{c}\) \[ |\vec{c}|^2 = (-2)^2 + (3)^2 + (6)^2 = 4 + 9 + 36 = 49 \] ### Step 7: Calculate the projection \(\vec{a_2}\) of \(\vec{a_1}\) onto \(\vec{c}\) Using the projection formula: \[ \vec{a_2} = \frac{\vec{a_1} \cdot \vec{c}}{|\vec{c}|^2} \vec{c} \] Substituting the values: \[ \vec{a_2} = \frac{-943/49}{49} \vec{c} = \frac{-943}{2401} \vec{c} \] \[ = \frac{-943}{2401} (-2\hat{i} + 3\hat{j} + 6\hat{k}) = \left(\frac{1886}{2401}\hat{i} - \frac{2829}{2401}\hat{j} - \frac{5658}{2401}\hat{k}\right) \] ### Final Result Thus, the projection \(\vec{a_2}\) is: \[ \vec{a_2} = \frac{943}{2401} (2\hat{i} - 3\hat{j} - 6\hat{k}) \]

To solve the problem step by step, we will find the projection of vector \(\vec{a}\) onto vector \(\vec{b}\) to get \(\vec{a_1}\), and then project \(\vec{a_1}\) onto vector \(\vec{c}\) to find \(\vec{a_2}\). ### Step 1: Define the vectors Given: \[ \vec{a} = 2\hat{i} + 3\hat{j} - 6\hat{k} \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Martrix - match type|10 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Integer type|17 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

Let veca= 2 hati + 3hatj - 6hatk, vecb = 2hati - 3hatj + 6hatk and vecc = -2 hati + 3hatj + 6hatk . Let veca_(1) be the projection of veca on vecb and veca_(2) be the projection of veca_(1) on vecc . Then veca_(1).vecb is equal to

find vecA xx vecB if vecA = hati - 2 hatj + 4 hatk and vecB = 3 hati - hatj + 2hatk

If veca =hati + hatj-hatk, vecb = - hati + 2hatj + 2hatk and vecc = - hati +2hatj -hatk , then a unit vector normal to the vectors veca + vecb and vecb -vecc , is

If vecA= (2hati + 3hatj + 5hatk) and vecB = (hati+ 6hatj+6hatk) , then projection of vecA on vecB would be

If veca = 2hati -3hatj-1hatk and vecb =hati + 4hatj -2hatk " then " veca xx vecb is

Let veca -2hati + hatj +hatk , vecb =hati + 2hatj +hatk and vecc = 2hati -3hatj +4hatk . A " vector " vecr " satisfying " vecr xx vecb = vecc xx vecb and vecr . Veca =0 is

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=7hati+3hatj-6hatk , vecb=2hati+5hatj-hatk and vecc=-hati+2hatj+4hatk . Find (veca-vecb)xx(vecc-vecb) .

Let veca=hati + hatj +hatk,vecb=hati- hatj + hatk and vecc= hati-hatj - hatk be three vectors. A vectors vecv in the plane of veca and vecb , whose projection on vecc is 1/sqrt3 is given by

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Comprehension type
  1. Vectors vecx,vecy,vecz each of magnitude sqrt(2) make angles of 60^0 w...

    Text Solution

    |

  2. If vecx * xvecy=veca, vecy xx vecz=vecb, vecx.vecb=gamma, vecx.vecy=1 ...

    Text Solution

    |

  3. Given two orthogonal vectors vecA and vecB each of length unity. Let v...

    Text Solution

    |

  4. Given two orthogonal vectors vecA and vecB each of length unity. Let v...

    Text Solution

    |

  5. Given two orthogonal vectors vecA and VecB each of length unity. Let v...

    Text Solution

    |

  6. Let veca= 2 hati + 3hatj - 6hatk, vecb = 2hati - 3hatj + 6hatk and vec...

    Text Solution

    |

  7. Let veca= 2 hati + 3hatj - 6hatk, vecb = 2hati - 3hatj + 6hatk and vec...

    Text Solution

    |

  8. Let veca= 2 hati + 3hatj - 6hatk, vecb = 2hati - 3hatj + 6hatk and vec...

    Text Solution

    |

  9. Consider a triangular pyramid ABCD the position vectors of whose angul...

    Text Solution

    |

  10. Consider a triangular pyramid ABCD the position vectors of whone agula...

    Text Solution

    |

  11. Consider a triangular pyramid ABCD the position vectors of whose agula...

    Text Solution

    |

  12. Vertices of a parallelogram taken in order are A, ( 2,-1,4) , B (1,0,-...

    Text Solution

    |

  13. Vertices of a parallelogram taken in order are A( 2,-1,4)B(1,0,-1...

    Text Solution

    |

  14. Vertices of a parallelogram taken in order are A( 2,-1,4)B(1,0,-1...

    Text Solution

    |

  15. Let vec(r) is a positive vector of a variable pont in cartesian OXY pl...

    Text Solution

    |

  16. Let vec(r) is a positive vector of a variable pont in cartesian OXY pl...

    Text Solution

    |

  17. Let vec(r) is a positive vector of a variable pont in cartesian OXY pl...

    Text Solution

    |

  18. Ab, AC and AD are three adjacent edges of a parallelpiped. The diagona...

    Text Solution

    |

  19. Ab, AC and AD are three adjacent edges of a parallelpiped. The diagona...

    Text Solution

    |

  20. Ab, AC and AD are three adjacent edges of a parallelpiped. The diagona...

    Text Solution

    |