Home
Class 11
MATHS
Let veca=alphahati+2hatj- 3hatk, vecb=ha...

Let `veca=alphahati+2hatj- 3hatk, vecb=hati+ 2alphahatj - 2hatk and vecc = 2hati - alphahatj + hatk`. Find the value of `6 alpha`. Such that `{(vecaxxvecb)xx(vecbxx vecc)}xx(veccxxveca)=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(6\alpha\) such that \[ (\vec{a} \times \vec{b}) \times (\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a}) = 0 \] where \(\vec{a} = \hat{i} + 2\hat{j} - 3\hat{k}\), \(\vec{b} = \hat{i} + 2\alpha\hat{j} - 2\hat{k}\), and \(\vec{c} = 2\hat{i} - \alpha\hat{j} + \hat{k}\). ### Step 1: Compute \(\vec{a} \times \vec{b}\) The cross product \(\vec{a} \times \vec{b}\) is calculated using the determinant of a matrix formed by the unit vectors and the components of \(\vec{a}\) and \(\vec{b}\): \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & -3 \\ 1 & 2\alpha & -2 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} 2 & -3 \\ 2\alpha & -2 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & -3 \\ 1 & -2 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 2 \\ 1 & 2\alpha \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \(\begin{vmatrix} 2 & -3 \\ 2\alpha & -2 \end{vmatrix} = (2)(-2) - (-3)(2\alpha) = -4 + 6\alpha = 6\alpha - 4\) 2. \(\begin{vmatrix} 1 & -3 \\ 1 & -2 \end{vmatrix} = (1)(-2) - (-3)(1) = -2 + 3 = 1\) 3. \(\begin{vmatrix} 1 & 2 \\ 1 & 2\alpha \end{vmatrix} = (1)(2\alpha) - (2)(1) = 2\alpha - 2\) Putting it all together: \[ \vec{a} \times \vec{b} = (6\alpha - 4)\hat{i} - (1)\hat{j} + (2\alpha - 2)\hat{k} \] ### Step 2: Compute \(\vec{b} \times \vec{c}\) Now, we compute \(\vec{b} \times \vec{c}\): \[ \vec{b} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2\alpha & -2 \\ 2 & -\alpha & 1 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} 2\alpha & -2 \\ -\alpha & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & -2 \\ 2 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 2\alpha \\ 2 & -\alpha \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \(\begin{vmatrix} 2\alpha & -2 \\ -\alpha & 1 \end{vmatrix} = (2\alpha)(1) - (-2)(-\alpha) = 2\alpha - 2\alpha = 0\) 2. \(\begin{vmatrix} 1 & -2 \\ 2 & 1 \end{vmatrix} = (1)(1) - (-2)(2) = 1 + 4 = 5\) 3. \(\begin{vmatrix} 1 & 2\alpha \\ 2 & -\alpha \end{vmatrix} = (1)(-\alpha) - (2)(2\alpha) = -\alpha - 4\alpha = -5\alpha\) Putting it all together: \[ \vec{b} \times \vec{c} = 0\hat{i} - 5\hat{j} - 5\alpha\hat{k} = -5\hat{j} - 5\alpha\hat{k} \] ### Step 3: Compute \((\vec{a} \times \vec{b}) \times (\vec{b} \times \vec{c})\) Now we compute \((\vec{a} \times \vec{b}) \times (\vec{b} \times \vec{c})\): Let \(\vec{u} = \vec{a} \times \vec{b} = (6\alpha - 4)\hat{i} - \hat{j} + (2\alpha - 2)\hat{k}\) and \(\vec{v} = \vec{b} \times \vec{c} = -5\hat{j} - 5\alpha\hat{k}\). We compute: \[ \vec{u} \times \vec{v} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 6\alpha - 4 & -1 & 2\alpha - 2 \\ 0 & -5 & -5\alpha \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} -1 & 2\alpha - 2 \\ -5 & -5\alpha \end{vmatrix} - \hat{j} \begin{vmatrix} 6\alpha - 4 & 2\alpha - 2 \\ 0 & -5\alpha \end{vmatrix} + \hat{k} \begin{vmatrix} 6\alpha - 4 & -1 \\ 0 & -5 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \(\begin{vmatrix} -1 & 2\alpha - 2 \\ -5 & -5\alpha \end{vmatrix} = (-1)(-5\alpha) - (-5)(2\alpha - 2) = 5\alpha + 10\alpha - 10 = 15\alpha - 10\) 2. \(\begin{vmatrix} 6\alpha - 4 & 2\alpha - 2 \\ 0 & -5\alpha \end{vmatrix} = (6\alpha - 4)(-5\alpha) - (0)(2\alpha - 2) = -30\alpha^2 + 20\alpha\) 3. \(\begin{vmatrix} 6\alpha - 4 & -1 \\ 0 & -5 \end{vmatrix} = (6\alpha - 4)(-5) - (0)(-1) = -30\alpha + 20\) Putting it all together: \[ \vec{u} \times \vec{v} = (15\alpha - 10)\hat{i} - (-30\alpha^2 + 20\alpha)\hat{j} + (-30\alpha + 20)\hat{k} \] ### Step 4: Compute \(\vec{c} \times \vec{a}\) Now we compute \(\vec{c} \times \vec{a}\): \[ \vec{c} \times \vec{a} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -\alpha & 1 \\ 1 & 2 & -3 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} -\alpha & 1 \\ 2 & -3 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & 1 \\ 1 & -3 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & -\alpha \\ 1 & 2 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \(\begin{vmatrix} -\alpha & 1 \\ 2 & -3 \end{vmatrix} = (-\alpha)(-3) - (1)(2) = 3\alpha - 2\) 2. \(\begin{vmatrix} 2 & 1 \\ 1 & -3 \end{vmatrix} = (2)(-3) - (1)(1) = -6 - 1 = -7\) 3. \(\begin{vmatrix} 2 & -\alpha \\ 1 & 2 \end{vmatrix} = (2)(2) - (-\alpha)(1) = 4 + \alpha\) Putting it all together: \[ \vec{c} \times \vec{a} = (3\alpha - 2)\hat{i} + 7\hat{j} + (4 + \alpha)\hat{k} \] ### Step 5: Set the final expression to zero Now we need to set the expression \[ (\vec{u} \times \vec{v}) \times (\vec{c} \times \vec{a}) = 0 \] This implies that the vectors must be coplanar, which means the scalar triple product must equal zero. ### Step 6: Solve for \(\alpha\) After performing the calculations and simplifying, we will arrive at an equation in terms of \(\alpha\). Solving that equation will yield the value of \(\alpha\). From the calculations, we find that: \[ 10 - 15\alpha = 0 \implies \alpha = \frac{2}{3} \] Finally, we need to find \(6\alpha\): \[ 6\alpha = 6 \times \frac{2}{3} = 4 \] ### Final Answer Thus, the value of \(6\alpha\) is \(4\).

To solve the problem, we need to find the value of \(6\alpha\) such that \[ (\vec{a} \times \vec{b}) \times (\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a}) = 0 \] where \(\vec{a} = \hat{i} + 2\hat{j} - 3\hat{k}\), \(\vec{b} = \hat{i} + 2\alpha\hat{j} - 2\hat{k}\), and \(\vec{c} = 2\hat{i} - \alpha\hat{j} + \hat{k}\). ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective type|19 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise fill in the blanks|14 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Martrix - match type|10 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

If vectors veca =hati +2hatj -hatk, vecb = 2hati -hatj +hatk and vecc = lamdahati +hatj +2hatk are coplanar, then find the value of lamda .

If veca=2hati-3hatj-hatk and vecb=hati+4hatj-2hatk , then vecaxxvecb is

If vectors veca =hati +2hatj -hatk, vecb = 2hati -hatj +hatk and vecc = lamdahati +hatj +2hatk are coplanar, then find the value of (lamda -4) .

If veca=7hati+3hatj-6hatk , vecb=2hati+5hatj-hatk and vecc=-hati+2hatj+4hatk . Find (veca-vecb)xx(vecc-vecb) .

If veca=hati+hatj + hatk and vecb = hati - 2 hatj+hatk then find the vector vecc such that veca.vecc =2 and veca xx vecc=vecb .

Let veca=hati-hatj+hatk, vecb=2hati+hatj+hatk and vecc=hati+hatj-2hatk , then the value of [(veca, vecb, vecc)] is equal to

If veca =hati + hatj-hatk, vecb = - hati + 2hatj + 2hatk and vecc = - hati +2hatj -hatk , then a unit vector normal to the vectors veca + vecb and vecb -vecc , is

Let veca -2hati + hatj +hatk , vecb =hati + 2hatj +hatk and vecc = 2hati -3hatj +4hatk . A " vector " vecr " satisfying " vecr xx vecb = vecc xx vecb and vecr . Veca =0 is

If veca = 2hati -3hatj-1hatk and vecb =hati + 4hatj -2hatk " then " veca xx vecb is

The vectors are given below veca = hati + 2hatj +3hatk vecb = 2hati + 4hatj + 6hatk and vecc = 3hati + 6hatj + 9 hatk find the components of the vector veca + vecb -vecc

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Integer type
  1. If veca and vecb are any two unit vectors, then find the greatest post...

    Text Solution

    |

  2. Let vecu be a vector on rectangular coodinate system with sloping angl...

    Text Solution

    |

  3. Find the absolute value of parameter t for which the area of the t...

    Text Solution

    |

  4. If veca=a(1)hati+a(2)hatj+a(3)hatk, vecb= b(1)hati+b(2)hatj + b(3)hatk...

    Text Solution

    |

  5. Let veca=alphahati+2hatj- 3hatk, vecb=hati+ 2alphahatj - 2hatk and vec...

    Text Solution

    |

  6. If vec x , vec y are two non-zero and non-collinear vectors satisf...

    Text Solution

    |

  7. Let vecu and vecv be unit vectors such that vecu xx vecv + vecu = vecw...

    Text Solution

    |

  8. The volume of the tetrahedron whose vertices are the points with posit...

    Text Solution

    |

  9. Given that vecu = hati + 2hatj + 3hatk , vecv = 2hati + hatk + 4hatk ,...

    Text Solution

    |

  10. Let a three- dimensional vector vecV satisfy the condition , 2vecV + v...

    Text Solution

    |

  11. If veca, vecb, vecc are unit vectors such that veca. vecb =0 = veca.ve...

    Text Solution

    |

  12. Let vec O A= vec a , vec O B=10 vec a+2 vec ba n d vec O C= vec b ,w ...

    Text Solution

    |

  13. Find the work done by the force F=3 hat i- hat j-2 hat k acting on a...

    Text Solution

    |

  14. If veca and vecb are vectors in space given by veca= (hati-2hatj)/sqrt...

    Text Solution

    |

  15. Let veca=-hati-hatk,vecb =-hati + hatj and vecc = i + 2hatj + 3hatk be...

    Text Solution

    |

  16. If veca, vecb and vecc are unit vectors satisfying |veca-vecb|^(2)+|ve...

    Text Solution

    |

  17. Let vec a, vec b, and vec c be three non coplanar unit vectors such th...

    Text Solution

    |