Home
Class 11
MATHS
If vec x , vec y are two non-zero and ...

If ` vec x , vec y` are two non-zero and non-collinear vectors satisfying `[(a-2)alpha^2+(b-3)alpha+c] vec x+[(a-2)beta^2+(b-3)beta+c] vec y+[(a-2)gamma^2+(b-3)gamma+c]( vec xxx vec y)=0,w h e r ealpha,beta,gamma` are three distinct real numbers, then find the value of `(a^2+b^2+c^2-4)dot`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step-by-step, we start with the given equation: \[ [(a-2)\alpha^2 + (b-3)\alpha + c] \vec{x} + [(a-2)\beta^2 + (b-3)\beta + c] \vec{y} + [(a-2)\gamma^2 + (b-3)\gamma + c](\vec{x} \times \vec{y}) = 0 \] ### Step 1: Understanding the Equation The equation states that a linear combination of the vectors \(\vec{x}\), \(\vec{y}\), and \(\vec{x} \times \vec{y}\) equals zero. Since \(\vec{x}\) and \(\vec{y}\) are non-zero and non-collinear, the only way for this equation to hold true is if the coefficients of each vector are equal to zero. ### Step 2: Setting Up the Coefficients From the equation, we can derive three separate equations by setting the coefficients of \(\vec{x}\), \(\vec{y}\), and \(\vec{x} \times \vec{y}\) to zero: 1. \(a - 2\alpha^2 + b - 3\alpha + c = 0\) (for \(\vec{x}\)) 2. \(a - 2\beta^2 + b - 3\beta + c = 0\) (for \(\vec{y}\)) 3. \(a - 2\gamma^2 + b - 3\gamma + c = 0\) (for \(\vec{x} \times \vec{y}\)) ### Step 3: Analyzing the Coefficients We observe that all three equations have the same structure. This suggests that the coefficients of \(\alpha^2\), \(\alpha\), and the constant term must be equal across all three equations. From the three equations, we can deduce: - Coefficient of \(\alpha^2\): \(a - 2\) - Coefficient of \(\alpha\): \(b - 3\) - Constant term: \(c\) ### Step 4: Setting Coefficients to Zero For the equations to hold, we set: 1. \(a - 2 = 0\) ⇒ \(a = 2\) 2. \(b - 3 = 0\) ⇒ \(b = 3\) 3. \(c = 0\) ### Step 5: Finding the Required Expression Now we need to find the value of \(a^2 + b^2 + c^2 - 4\): \[ a^2 + b^2 + c^2 - 4 = 2^2 + 3^2 + 0^2 - 4 \] Calculating each term: - \(2^2 = 4\) - \(3^2 = 9\) - \(0^2 = 0\) So, we have: \[ 4 + 9 + 0 - 4 = 9 \] ### Final Answer Thus, the value of \(a^2 + b^2 + c^2 - 4\) is: \[ \boxed{9} \]

To solve the problem step-by-step, we start with the given equation: \[ [(a-2)\alpha^2 + (b-3)\alpha + c] \vec{x} + [(a-2)\beta^2 + (b-3)\beta + c] \vec{y} + [(a-2)\gamma^2 + (b-3)\gamma + c](\vec{x} \times \vec{y}) = 0 \] ### Step 1: Understanding the Equation The equation states that a linear combination of the vectors \(\vec{x}\), \(\vec{y}\), and \(\vec{x} \times \vec{y}\) equals zero. Since \(\vec{x}\) and \(\vec{y}\) are non-zero and non-collinear, the only way for this equation to hold true is if the coefficients of each vector are equal to zero. ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective type|19 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise fill in the blanks|14 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Martrix - match type|10 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

If vecx and vecy are two non zero, non - collinear vectors satisfying ((a-3)alpha^(2)+(b-4)alpha+(c-1))vecx +[(a-3)beta^(2)+(b-4)beta+(c-1)]vecy+[(a-3)gamma^(2)+(b-4)gamma+(c-1)](vecx xx vecy)=0 (where alpha, beta,gamma are three distinct numbers), then the value of (a^(2)+b^(2)+c^(2))/(4) is equal to

If vec a and vec b are two non-collinear unit vectors such that | vec a+ vec b|=sqrt(3), find (2 vec a-5 vec b). (3 vec a+ vec b) .

If vec a , vec ba n d vec c are unit vectors satisfying | vec a- vec b|^2+| vec b- vec c|^2+| vec c- vec a|^2=9, then |2 vec a+5 vec b+5 vec c| is.

If vec a\ a n d\ vec b are two non collinear unit vectors such that | vec a+ vec b|=sqrt(3),\ find \ (2 vec a-5 vec b). (3 vec a+ vec b)

If vec xa n d vec y are two non-collinear vectors and a, b, and c represent the sides of a A B C satisfying (a-b) vec x+(b-c) vec y+(c-a)( vec x xx vec y)=0, then A B C is (where vec xxx vec y is perpendicular to the plane of xa n dy ) a. an acute-angled triangle b. an obtuse-angled triangle c. a right-angled triangle d. a scalene triangle

Let vec aa n d vec b be two non-zero perpendicular vectors. A vecrtor vec x satisfying the equation vec x xx vec b= vec a is vecx= beta vecb-1/|b|^2 vecaxx vecb then beta can be

If vec a ,\ vec b ,\ vec c are non coplanar vectors, prove that the following vectors are non coplanar: \ 2 vec a- vec b+3 vec c ,\ vec a+ vec b-2 vec c\ a n d\ vec a+ vec b-3 vec c

If vec a, vec b , vec c are three non- coplanar vectors such that vec a + vec b + vec c = alpha vec d and vec b +vec c + vec d = beta vec a, " then " vec a + vec b + vec c + vec d to equal to

If vec a , vec b , vec c are three non-zero vectors (no two of which are collinear), such that the pairs of vectors (vec a + vec b, vec c) and (vec b + vec c , vec a) are collinear, then vec a + vec b + vec c =

Unit vectors vec a and vec b are perpendicular, and unit vector vec c is inclined at angle theta to both vec a and vec bdot If vec c = alpha vec a+beta vec b+gamma( vec axx vec b), then a=beta b. gamma^1=1-2alpha^2 c. gamma^2=-cos2theta d. beta^2=(1+cos2theta)/2

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Integer type
  1. If veca and vecb are any two unit vectors, then find the greatest post...

    Text Solution

    |

  2. Let vecu be a vector on rectangular coodinate system with sloping angl...

    Text Solution

    |

  3. Find the absolute value of parameter t for which the area of the t...

    Text Solution

    |

  4. If veca=a(1)hati+a(2)hatj+a(3)hatk, vecb= b(1)hati+b(2)hatj + b(3)hatk...

    Text Solution

    |

  5. Let veca=alphahati+2hatj- 3hatk, vecb=hati+ 2alphahatj - 2hatk and vec...

    Text Solution

    |

  6. If vec x , vec y are two non-zero and non-collinear vectors satisf...

    Text Solution

    |

  7. Let vecu and vecv be unit vectors such that vecu xx vecv + vecu = vecw...

    Text Solution

    |

  8. The volume of the tetrahedron whose vertices are the points with posit...

    Text Solution

    |

  9. Given that vecu = hati + 2hatj + 3hatk , vecv = 2hati + hatk + 4hatk ,...

    Text Solution

    |

  10. Let a three- dimensional vector vecV satisfy the condition , 2vecV + v...

    Text Solution

    |

  11. If veca, vecb, vecc are unit vectors such that veca. vecb =0 = veca.ve...

    Text Solution

    |

  12. Let vec O A= vec a , vec O B=10 vec a+2 vec ba n d vec O C= vec b ,w ...

    Text Solution

    |

  13. Find the work done by the force F=3 hat i- hat j-2 hat k acting on a...

    Text Solution

    |

  14. If veca and vecb are vectors in space given by veca= (hati-2hatj)/sqrt...

    Text Solution

    |

  15. Let veca=-hati-hatk,vecb =-hati + hatj and vecc = i + 2hatj + 3hatk be...

    Text Solution

    |

  16. If veca, vecb and vecc are unit vectors satisfying |veca-vecb|^(2)+|ve...

    Text Solution

    |

  17. Let vec a, vec b, and vec c be three non coplanar unit vectors such th...

    Text Solution

    |