Home
Class 11
MATHS
The volume of the tetrahedron whose vert...

The volume of the tetrahedron whose vertices are the points with positon vectors `hati-6hatj+10hatk, -hati-3hatj+7hatk, 5hati-hatj+lambdahatk` and `7hati-4hatj+7hatk` is 11 cubic units if the value of `lamda` is

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \(\lambda\) for the tetrahedron with given vertices, we will follow these steps: ### Step 1: Identify the position vectors The vertices of the tetrahedron are given by the position vectors: - \( A = \hat{i} - 6\hat{j} + 10\hat{k} \) - \( B = -\hat{i} - 3\hat{j} + 7\hat{k} \) - \( C = 5\hat{i} - \hat{j} + \lambda\hat{k} \) - \( D = 7\hat{i} - 4\hat{j} + 7\hat{k} \) ### Step 2: Find the vectors from the origin to each vertex Let \( O \) be the origin: - \( \vec{OA} = \hat{i} - 6\hat{j} + 10\hat{k} \) - \( \vec{OB} = -\hat{i} - 3\hat{j} + 7\hat{k} \) - \( \vec{OC} = 5\hat{i} - \hat{j} + \lambda\hat{k} \) - \( \vec{OD} = 7\hat{i} - 4\hat{j} + 7\hat{k} \) ### Step 3: Calculate the vectors \( \vec{AB}, \vec{AC}, \vec{AD} \) Using the position vectors: - \( \vec{AB} = \vec{OB} - \vec{OA} = (-\hat{i} - 3\hat{j} + 7\hat{k}) - (\hat{i} - 6\hat{j} + 10\hat{k}) = -2\hat{i} + 3\hat{j} - 3\hat{k} \) - \( \vec{AC} = \vec{OC} - \vec{OA} = (5\hat{i} - \hat{j} + \lambda\hat{k}) - (\hat{i} - 6\hat{j} + 10\hat{k}) = 4\hat{i} + 5\hat{j} + (\lambda - 10)\hat{k} \) - \( \vec{AD} = \vec{OD} - \vec{OA} = (7\hat{i} - 4\hat{j} + 7\hat{k}) - (\hat{i} - 6\hat{j} + 10\hat{k}) = 6\hat{i} + 2\hat{j} - 3\hat{k} \) ### Step 4: Calculate the volume of the tetrahedron The volume \( V \) of the tetrahedron formed by the vectors \( \vec{AB}, \vec{AC}, \vec{AD} \) is given by: \[ V = \frac{1}{6} |\vec{AB} \cdot (\vec{AC} \times \vec{AD})| \] ### Step 5: Calculate the cross product \( \vec{AC} \times \vec{AD} \) \[ \vec{AC} = \begin{pmatrix} 4 \\ 5 \\ \lambda - 10 \end{pmatrix}, \quad \vec{AD} = \begin{pmatrix} 6 \\ 2 \\ -3 \end{pmatrix} \] Calculating the determinant: \[ \vec{AC} \times \vec{AD} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & 5 & \lambda - 10 \\ 6 & 2 & -3 \end{vmatrix} \] Calculating this determinant: \[ = \hat{i} \begin{vmatrix} 5 & \lambda - 10 \\ 2 & -3 \end{vmatrix} - \hat{j} \begin{vmatrix} 4 & \lambda - 10 \\ 6 & -3 \end{vmatrix} + \hat{k} \begin{vmatrix} 4 & 5 \\ 6 & 2 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \(\begin{vmatrix} 5 & \lambda - 10 \\ 2 & -3 \end{vmatrix} = 5(-3) - 2(\lambda - 10) = -15 - 2\lambda + 20 = 5 - 2\lambda\) 2. \(\begin{vmatrix} 4 & \lambda - 10 \\ 6 & -3 \end{vmatrix} = 4(-3) - 6(\lambda - 10) = -12 - 6\lambda + 60 = 48 - 6\lambda\) 3. \(\begin{vmatrix} 4 & 5 \\ 6 & 2 \end{vmatrix} = 4(2) - 5(6) = 8 - 30 = -22\) Putting it all together: \[ \vec{AC} \times \vec{AD} = (5 - 2\lambda)\hat{i} - (48 - 6\lambda)\hat{j} - 22\hat{k} \] ### Step 6: Calculate the dot product \( \vec{AB} \cdot (\vec{AC} \times \vec{AD}) \) \[ \vec{AB} = \begin{pmatrix} -2 \\ 3 \\ -3 \end{pmatrix} \] Calculating the dot product: \[ \vec{AB} \cdot (\vec{AC} \times \vec{AD}) = -2(5 - 2\lambda) + 3(-48 + 6\lambda) - 3(-22) \] Expanding this: \[ = -10 + 4\lambda - 144 + 18\lambda + 66 \] Combining like terms: \[ = (4\lambda + 18\lambda) + (-10 - 144 + 66) = 22\lambda - 88 \] ### Step 7: Set the volume equal to 11 and solve for \(\lambda\) \[ \frac{1}{6} |22\lambda - 88| = 11 \] Multiplying both sides by 6: \[ |22\lambda - 88| = 66 \] This gives two equations: 1. \(22\lambda - 88 = 66\) 2. \(22\lambda - 88 = -66\) Solving the first equation: \[ 22\lambda = 154 \implies \lambda = 7 \] Solving the second equation: \[ 22\lambda = 22 \implies \lambda = 1 \] ### Conclusion The possible values for \(\lambda\) are \(7\) and \(1\). However, since the problem states the volume is specifically \(11\) cubic units, we conclude that: \[ \lambda = 7 \]

To find the value of \(\lambda\) for the tetrahedron with given vertices, we will follow these steps: ### Step 1: Identify the position vectors The vertices of the tetrahedron are given by the position vectors: - \( A = \hat{i} - 6\hat{j} + 10\hat{k} \) - \( B = -\hat{i} - 3\hat{j} + 7\hat{k} \) - \( C = 5\hat{i} - \hat{j} + \lambda\hat{k} \) - \( D = 7\hat{i} - 4\hat{j} + 7\hat{k} \) ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective type|19 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise fill in the blanks|14 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Martrix - match type|10 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

If the volume of the parallelopiped whose coterminus edges are represented by the vectors 5hati -4hatj +hatk , 4hati+3hatj-lambda hatk and hati-2hatj+7hatk is 216 cubic units, find the value of lambda .

The points with position vectors alpha hati+hatj+hatk, hati-hatj-hatk, hati+2hatj-hatk, hati+hatj+betahatk are coplanar if

The volume of the tetrahedron whose vertices are the points hati, hati+hatj, hati+hatj+hatk and 2hati+3hatj+lamdahatk is 1//6 units, Then the values of lamda

Find the angle between the following pairs of vectors 3hati+2hatj-6hatk, 4hati-3hatj+hatk , hati-2hatj+3hatk, 3hati-2hatj+hatk

Consider points A,B,C annd D with position vectors 7hati-4hatj+7hatk,hati-6hatj+10hatk,-1hati-3hatj+4hatk and 5hati-hatj+5hatk , respectively. Then, ABCD is

Prove that four points position vectors 6hati-7hatj,16hati-19 hatj-4hatk,3hatj-6hatk and 2hati + 5hatj+ 10hatk are not coplanar.

Find the direction cosines of the resultant of the vectors (hati+hatj+hatk),(-hati+hatj+hatk),(hati-hatj+hatk) and (hati+hatj-hatk) .

The point having position vectors 2hati+3hatj+4hatk,3hati+4hatj+2hatk and 4hati+2hatj+3hatk are the vertices of

Show that the vectors hati-hatj-hatk,2hati+3hatj+hatk and 7hati+3hatj-4hatk are coplanar.

Find the volume of the parallelopiped, whose three coterminous edges are represented by the vectors hati+hatj+hatk,hati-hatj+hatk,hati+2hatj-hatk .

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Integer type
  1. If veca and vecb are any two unit vectors, then find the greatest post...

    Text Solution

    |

  2. Let vecu be a vector on rectangular coodinate system with sloping angl...

    Text Solution

    |

  3. Find the absolute value of parameter t for which the area of the t...

    Text Solution

    |

  4. If veca=a(1)hati+a(2)hatj+a(3)hatk, vecb= b(1)hati+b(2)hatj + b(3)hatk...

    Text Solution

    |

  5. Let veca=alphahati+2hatj- 3hatk, vecb=hati+ 2alphahatj - 2hatk and vec...

    Text Solution

    |

  6. If vec x , vec y are two non-zero and non-collinear vectors satisf...

    Text Solution

    |

  7. Let vecu and vecv be unit vectors such that vecu xx vecv + vecu = vecw...

    Text Solution

    |

  8. The volume of the tetrahedron whose vertices are the points with posit...

    Text Solution

    |

  9. Given that vecu = hati + 2hatj + 3hatk , vecv = 2hati + hatk + 4hatk ,...

    Text Solution

    |

  10. Let a three- dimensional vector vecV satisfy the condition , 2vecV + v...

    Text Solution

    |

  11. If veca, vecb, vecc are unit vectors such that veca. vecb =0 = veca.ve...

    Text Solution

    |

  12. Let vec O A= vec a , vec O B=10 vec a+2 vec ba n d vec O C= vec b ,w ...

    Text Solution

    |

  13. Find the work done by the force F=3 hat i- hat j-2 hat k acting on a...

    Text Solution

    |

  14. If veca and vecb are vectors in space given by veca= (hati-2hatj)/sqrt...

    Text Solution

    |

  15. Let veca=-hati-hatk,vecb =-hati + hatj and vecc = i + 2hatj + 3hatk be...

    Text Solution

    |

  16. If veca, vecb and vecc are unit vectors satisfying |veca-vecb|^(2)+|ve...

    Text Solution

    |

  17. Let vec a, vec b, and vec c be three non coplanar unit vectors such th...

    Text Solution

    |