Home
Class 11
MATHS
Given that vecu = hati + 2hatj + 3hatk ,...

Given that `vecu = hati + 2hatj + 3hatk , vecv = 2hati + hatk + 4hatk , vecw = hati + 3hatj + 3hatk and (vecu.vecR - 15) hati + (vecc. vecR - 30) hatj + (vecw . vec- 20) veck = vec0`. Then find the greatest integer less than or equal to `|vecR|`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we will follow the instructions provided in the video transcript and derive the solution systematically. ### Step 1: Define the vectors We are given: - \(\vec{u} = \hat{i} + 2\hat{j} + 3\hat{k}\) - \(\vec{v} = 2\hat{i} + \hat{j} + 4\hat{k}\) - \(\vec{w} = \hat{i} + 3\hat{j} + 3\hat{k}\) ### Step 2: Write the equation The problem states: \[ (\vec{u} \cdot \vec{R} - 15) \hat{i} + (\vec{v} \cdot \vec{R} - 30) \hat{j} + (\vec{w} \cdot \vec{R} - 20) \hat{k} = \vec{0} \] This implies: \[ \vec{u} \cdot \vec{R} - 15 = 0 \] \[ \vec{v} \cdot \vec{R} - 30 = 0 \] \[ \vec{w} \cdot \vec{R} - 20 = 0 \] ### Step 3: Assume \(\vec{R}\) Let \(\vec{R} = x\hat{i} + y\hat{j} + z\hat{k}\). ### Step 4: Set up the dot product equations From the equations derived: 1. \(\vec{u} \cdot \vec{R} = 15\) \[ (1)(x) + (2)(y) + (3)(z) = 15 \quad \text{(1)} \] 2. \(\vec{v} \cdot \vec{R} = 30\) \[ (2)(x) + (1)(y) + (4)(z) = 30 \quad \text{(2)} \] 3. \(\vec{w} \cdot \vec{R} = 20\) \[ (1)(x) + (3)(y) + (3)(z) = 20 \quad \text{(3)} \] ### Step 5: Solve the system of equations We now have a system of three equations: 1. \(x + 2y + 3z = 15\) 2. \(2x + y + 4z = 30\) 3. \(x + 3y + 3z = 20\) We can solve this system using substitution or elimination. From (1): \[ x = 15 - 2y - 3z \quad \text{(4)} \] Substituting (4) into (2): \[ 2(15 - 2y - 3z) + y + 4z = 30 \] \[ 30 - 4y - 6z + y + 4z = 30 \] \[ -3y - 2z = 0 \implies 3y + 2z = 0 \quad \text{(5)} \] Now substituting (4) into (3): \[ (15 - 2y - 3z) + 3y + 3z = 20 \] \[ 15 - 2y - 3z + 3y + 3z = 20 \] \[ 15 + y = 20 \implies y = 5 \quad \text{(6)} \] Substituting (6) back into (5): \[ 3(5) + 2z = 0 \implies 15 + 2z = 0 \implies z = -7.5 \quad \text{(7)} \] Now substituting (6) and (7) back into (4): \[ x = 15 - 2(5) - 3(-7.5) = 15 - 10 + 22.5 = 27.5 \quad \text{(8)} \] ### Step 6: Calculate the magnitude of \(\vec{R}\) Now we have: \[ x = 27.5, \quad y = 5, \quad z = -7.5 \] Thus, \[ \vec{R} = 27.5\hat{i} + 5\hat{j} - 7.5\hat{k} \] The magnitude of \(\vec{R}\) is given by: \[ |\vec{R}| = \sqrt{x^2 + y^2 + z^2} = \sqrt{(27.5)^2 + (5)^2 + (-7.5)^2} \] Calculating: \[ |\vec{R}| = \sqrt{756.25 + 25 + 56.25} = \sqrt{837.5} \approx 28.96 \] ### Step 7: Find the greatest integer less than or equal to \(|\vec{R}|\) The greatest integer less than or equal to \(28.96\) is \(28\). ### Final Answer The greatest integer less than or equal to \(|\vec{R}|\) is \(28\). ---

To solve the given problem step by step, we will follow the instructions provided in the video transcript and derive the solution systematically. ### Step 1: Define the vectors We are given: - \(\vec{u} = \hat{i} + 2\hat{j} + 3\hat{k}\) - \(\vec{v} = 2\hat{i} + \hat{j} + 4\hat{k}\) - \(\vec{w} = \hat{i} + 3\hat{j} + 3\hat{k}\) ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective type|19 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise fill in the blanks|14 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Martrix - match type|10 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

Let veca -2hati + hatj +hatk , vecb =hati + 2hatj +hatk and vecc = 2hati -3hatj +4hatk . A " vector " vecr " satisfying " vecr xx vecb = vecc xx vecb and vecr . Veca =0 is

Let vecu= hati + hatj , vecv = hati -hatja and hati -hatj and vecw =hati + 2hatj + 3 hatk If hatn isa unit vector such that vecu .hatn=0 and vecn .hatn =0 , " then " |vecw.hatn| is equal to

Let vecu= hati + hatj , vecv = hati -hatj and vecw =hati + 2hatj + 3 hatk If hatn isa unit vector such that vecu .hatn=0 and vecv .hatn =0 , " then " |vecw.hatn| is equal to

Consider three vectors vecp=hati+hatj+hatk,vecq=2hati+4hatj-hatk and vecr=hati+hatj+3hatk and let vecs be a unit vector, then vecp,vecq and vecr are

The line vecr = 2hati - 3 hatj - hatk + lamda ( hati - hatj + 2 hatk ) lies in the plane vecr. (3 hati + hatj - hatk) + 2=0 or not

Let veca=2hati+3hatj+4hatk, vecb=hati-2hatj+hatk and vecc=hati+hatj-hatk. If vecr xx veca =vecb and vecr.vec c=3, then the value of |vecr| is equal to

Let veca=hati-3hatj+4hatk , vecB=6hati+4hatj-8hatk , vecC=5hati+2hatj+5hatk and a vector vecR satisfies vecR xx vecB = vecC xx vecB , vecR.vecA=0 , then the value of (|vecB|)/(|vecR-vecC|) is

vecr=3hati+2hatj-5hatk, veca=2hati-hatj+hatk, vecb=hati+3hatj-2hatk, vecc=-2hati+hatj-3hatk such that vecr=lambdaveca+muvecb+gammavecc , then

The angle between the planes vecr. (2 hati - 3 hatj + hatk) =1 and vecr. (hati - hatj) =4 is

Let vecV = 2hati +hatj - hatk and vecW= hati + 3hatk . if vecU is a unit vector, then the maximum value of the scalar triple product [ vecU vecV vecW] is

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Integer type
  1. If veca and vecb are any two unit vectors, then find the greatest post...

    Text Solution

    |

  2. Let vecu be a vector on rectangular coodinate system with sloping angl...

    Text Solution

    |

  3. Find the absolute value of parameter t for which the area of the t...

    Text Solution

    |

  4. If veca=a(1)hati+a(2)hatj+a(3)hatk, vecb= b(1)hati+b(2)hatj + b(3)hatk...

    Text Solution

    |

  5. Let veca=alphahati+2hatj- 3hatk, vecb=hati+ 2alphahatj - 2hatk and vec...

    Text Solution

    |

  6. If vec x , vec y are two non-zero and non-collinear vectors satisf...

    Text Solution

    |

  7. Let vecu and vecv be unit vectors such that vecu xx vecv + vecu = vecw...

    Text Solution

    |

  8. The volume of the tetrahedron whose vertices are the points with posit...

    Text Solution

    |

  9. Given that vecu = hati + 2hatj + 3hatk , vecv = 2hati + hatk + 4hatk ,...

    Text Solution

    |

  10. Let a three- dimensional vector vecV satisfy the condition , 2vecV + v...

    Text Solution

    |

  11. If veca, vecb, vecc are unit vectors such that veca. vecb =0 = veca.ve...

    Text Solution

    |

  12. Let vec O A= vec a , vec O B=10 vec a+2 vec ba n d vec O C= vec b ,w ...

    Text Solution

    |

  13. Find the work done by the force F=3 hat i- hat j-2 hat k acting on a...

    Text Solution

    |

  14. If veca and vecb are vectors in space given by veca= (hati-2hatj)/sqrt...

    Text Solution

    |

  15. Let veca=-hati-hatk,vecb =-hati + hatj and vecc = i + 2hatj + 3hatk be...

    Text Solution

    |

  16. If veca, vecb and vecc are unit vectors satisfying |veca-vecb|^(2)+|ve...

    Text Solution

    |

  17. Let vec a, vec b, and vec c be three non coplanar unit vectors such th...

    Text Solution

    |