Home
Class 11
MATHS
Let a three- dimensional vector vecV sat...

Let a three- dimensional vector `vecV` satisfy the condition , `2vecV + vecV xx ( hati + 2hatj ) = 2hati + hatk` . If `3|vecV| = sqrtm` . Then find the value of m.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we start from the equation provided: **Given:** \[ 2\vec{V} + \vec{V} \times (\hat{i} + 2\hat{j}) = 2\hat{i} + \hat{k} \] **Step 1: Define the vector \(\vec{V}\)** Let: \[ \vec{V} = a\hat{i} + b\hat{j} + c\hat{k} \] **Step 2: Calculate the cross product \(\vec{V} \times (\hat{i} + 2\hat{j})\)** Using the determinant form for the cross product: \[ \vec{V} \times (\hat{i} + 2\hat{j}) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a & b & c \\ 1 & 2 & 0 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i}(b \cdot 0 - c \cdot 2) - \hat{j}(a \cdot 0 - c \cdot 1) + \hat{k}(a \cdot 2 - b \cdot 1) \] \[ = -2c\hat{i} + c\hat{j} + (2a - b)\hat{k} \] Thus, \[ \vec{V} \times (\hat{i} + 2\hat{j}) = -2c\hat{i} + c\hat{j} + (2a - b)\hat{k} \] **Step 3: Substitute back into the original equation** Now substituting this back into the original equation: \[ 2\vec{V} + \left(-2c\hat{i} + c\hat{j} + (2a - b)\hat{k}\right) = 2\hat{i} + \hat{k} \] This gives: \[ 2(a\hat{i} + b\hat{j} + c\hat{k}) + (-2c\hat{i} + c\hat{j} + (2a - b)\hat{k}) = 2\hat{i} + \hat{k} \] Expanding this: \[ (2a - 2c)\hat{i} + (2b + c)\hat{j} + (2c + 2a - b)\hat{k} = 2\hat{i} + \hat{k} \] **Step 4: Equate coefficients** From this, we can equate the coefficients of \(\hat{i}\), \(\hat{j}\), and \(\hat{k}\): 1. \(2a - 2c = 2\) 2. \(2b + c = 0\) 3. \(2c + 2a - b = 1\) **Step 5: Solve the equations** From the first equation: \[ 2a - 2c = 2 \implies a - c = 1 \implies a = c + 1 \quad (1) \] From the second equation: \[ 2b + c = 0 \implies c = -2b \quad (2) \] Substituting (2) into (1): \[ a = -2b + 1 \quad (3) \] Now substituting (2) and (3) into the third equation: \[ 2(-2b) + 2(-2b + 1) - b = 1 \] \[ -4b - 4b + 2 - b = 1 \] \[ -9b + 2 = 1 \implies -9b = -1 \implies b = \frac{1}{9} \] Now substituting \(b\) back into (2): \[ c = -2 \times \frac{1}{9} = -\frac{2}{9} \] Substituting \(b\) into (3): \[ a = -2 \times \frac{1}{9} + 1 = 1 - \frac{2}{9} = \frac{7}{9} \] Thus, we have: \[ \vec{V} = \frac{7}{9}\hat{i} + \frac{1}{9}\hat{j} - \frac{2}{9}\hat{k} \] **Step 6: Calculate the magnitude of \(\vec{V}\)** The magnitude of \(\vec{V}\) is given by: \[ |\vec{V}| = \sqrt{\left(\frac{7}{9}\right)^2 + \left(\frac{1}{9}\right)^2 + \left(-\frac{2}{9}\right)^2} \] \[ = \sqrt{\frac{49}{81} + \frac{1}{81} + \frac{4}{81}} = \sqrt{\frac{54}{81}} = \sqrt{\frac{2}{3}} \] **Step 7: Find \(m\)** Given that \(3|\vec{V}| = \sqrt{m}\): \[ 3 \cdot \sqrt{\frac{2}{3}} = \sqrt{m} \] \[ \sqrt{m} = \sqrt{6} \implies m = 6 \] **Final Answer:** \[ m = 6 \] ---

To solve the given problem, we start from the equation provided: **Given:** \[ 2\vec{V} + \vec{V} \times (\hat{i} + 2\hat{j}) = 2\hat{i} + \hat{k} \] **Step 1: Define the vector \(\vec{V}\)** Let: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective type|19 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise fill in the blanks|14 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Martrix - match type|10 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

Find a unit vector perpendicular to each of the vectors hati+2hatj-3hatk and hati-2hatj+hatk .

Find the projection of the vector veca=3hati+2hatj-4hatk on the vector vecb=hati+2hatj+hatk .

If vecu = 2hati - 2hatj + 3hatk and the final velocity is vecv = 2hati - 4hatj + 5hatk and it is covered in a time of 10 sec, find the acceleration vector.

The norm of vector vecV=3veci-sqrt2vecj is

Vectors 2hati+2hatj-2hatk,5hati+yhatj+hatk and -hati+2hatj+2hatk are coplanar then find the value of y.

Vectors 5hati+yhatj+hatk,2hati+2hatj-2hatk and -hati+2hatj+2hatk are coplaner then find the value of y.

Find the unit vector perpendicular to the two vectors hati+2hatj-hatk and 2hati+3hatj+hatk .

The velociies of A and B are vecv_(A)= 2hati + 4hatj and vecv_(B) = 3hati - 7hatj , velocity of B as observed by A is

The linear velocity of rotating body is given by vecv = vecomega xx vecr where vecomega is the angular velocity and vecr is the radius vector. The angular velocity of body vecomega = hati - 2hatj + 2hatk and this radius vector vecr = 4hatj - 3hatk , then |vecv| is

The scalar product of the vector hati+hatj+hatk with a unit vector along the sum of the vectors 2hati+4hatj-5hatk and lamda hati+2hatj+3hatk is equal to one. Find the value of lamda .

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Integer type
  1. If veca and vecb are any two unit vectors, then find the greatest post...

    Text Solution

    |

  2. Let vecu be a vector on rectangular coodinate system with sloping angl...

    Text Solution

    |

  3. Find the absolute value of parameter t for which the area of the t...

    Text Solution

    |

  4. If veca=a(1)hati+a(2)hatj+a(3)hatk, vecb= b(1)hati+b(2)hatj + b(3)hatk...

    Text Solution

    |

  5. Let veca=alphahati+2hatj- 3hatk, vecb=hati+ 2alphahatj - 2hatk and vec...

    Text Solution

    |

  6. If vec x , vec y are two non-zero and non-collinear vectors satisf...

    Text Solution

    |

  7. Let vecu and vecv be unit vectors such that vecu xx vecv + vecu = vecw...

    Text Solution

    |

  8. The volume of the tetrahedron whose vertices are the points with posit...

    Text Solution

    |

  9. Given that vecu = hati + 2hatj + 3hatk , vecv = 2hati + hatk + 4hatk ,...

    Text Solution

    |

  10. Let a three- dimensional vector vecV satisfy the condition , 2vecV + v...

    Text Solution

    |

  11. If veca, vecb, vecc are unit vectors such that veca. vecb =0 = veca.ve...

    Text Solution

    |

  12. Let vec O A= vec a , vec O B=10 vec a+2 vec ba n d vec O C= vec b ,w ...

    Text Solution

    |

  13. Find the work done by the force F=3 hat i- hat j-2 hat k acting on a...

    Text Solution

    |

  14. If veca and vecb are vectors in space given by veca= (hati-2hatj)/sqrt...

    Text Solution

    |

  15. Let veca=-hati-hatk,vecb =-hati + hatj and vecc = i + 2hatj + 3hatk be...

    Text Solution

    |

  16. If veca, vecb and vecc are unit vectors satisfying |veca-vecb|^(2)+|ve...

    Text Solution

    |

  17. Let vec a, vec b, and vec c be three non coplanar unit vectors such th...

    Text Solution

    |