Home
Class 11
MATHS
Let vec O A= vec a , vec O B=10 vec a+2...

Let ` vec O A= vec a , vec O B=10 vec a+2 vec ba n d vec O C= vec b ,w h e r eO ,Aa n dC` are non-collinear points. Let `p` denotes the areaof quadrilateral `O A C B ,` and let `q` denote the area of parallelogram with `O Aa n dO C` as adjacent sides. If `p=k q ,` then find`kdot`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( k \) such that the area of quadrilateral \( OACB \) is \( k \) times the area of the parallelogram formed by vectors \( \vec{OA} \) and \( \vec{OC} \). ### Step-by-Step Solution: 1. **Define the Vectors:** - Let \( \vec{OA} = \vec{a} \) - Let \( \vec{OB} = 10\vec{a} + 2\vec{b} \) - Let \( \vec{OC} = \vec{b} \) 2. **Find the Area of the Parallelogram \( Q \):** - The area \( Q \) of the parallelogram formed by vectors \( \vec{OA} \) and \( \vec{OC} \) is given by: \[ Q = |\vec{OA} \times \vec{OC}| = |\vec{a} \times \vec{b}| \] 3. **Find the Area of Quadrilateral \( P \):** - The area \( P \) of quadrilateral \( OACB \) can be calculated as the sum of the areas of triangles \( OAB \) and \( OBC \). - The area of triangle \( OAB \) is: \[ \text{Area of } OAB = \frac{1}{2} |\vec{OA} \times \vec{OB}| = \frac{1}{2} |\vec{a} \times (10\vec{a} + 2\vec{b})| \] - Using the property of the cross product, we have: \[ \vec{a} \times (10\vec{a} + 2\vec{b}) = \vec{a} \times 10\vec{a} + \vec{a} \times 2\vec{b} = 0 + 2(\vec{a} \times \vec{b}) = 2(\vec{a} \times \vec{b}) \] - Thus, the area of triangle \( OAB \) becomes: \[ \text{Area of } OAB = \frac{1}{2} \cdot 2 |\vec{a} \times \vec{b}| = |\vec{a} \times \vec{b}| \] - The area of triangle \( OBC \) is: \[ \text{Area of } OBC = \frac{1}{2} |\vec{OB} \times \vec{OC}| = \frac{1}{2} |(10\vec{a} + 2\vec{b}) \times \vec{b}| \] - Again, using the property of the cross product: \[ (10\vec{a} + 2\vec{b}) \times \vec{b} = 10(\vec{a} \times \vec{b}) + 2(\vec{b} \times \vec{b}) = 10(\vec{a} \times \vec{b}) + 0 = 10(\vec{a} \times \vec{b}) \] - Thus, the area of triangle \( OBC \) becomes: \[ \text{Area of } OBC = \frac{1}{2} \cdot 10 |\vec{a} \times \vec{b}| = 5 |\vec{a} \times \vec{b}| \] 4. **Combine the Areas:** - Therefore, the total area \( P \) of quadrilateral \( OACB \) is: \[ P = \text{Area of } OAB + \text{Area of } OBC = |\vec{a} \times \vec{b}| + 5 |\vec{a} \times \vec{b}| = 6 |\vec{a} \times \vec{b}| \] 5. **Relate Areas \( P \) and \( Q \):** - We know that \( P = kQ \), where \( Q = |\vec{a} \times \vec{b}| \). - Substituting the values we found: \[ 6 |\vec{a} \times \vec{b}| = k |\vec{a} \times \vec{b}| \] 6. **Solve for \( k \):** - Dividing both sides by \( |\vec{a} \times \vec{b}| \) (assuming it is non-zero): \[ k = 6 \] ### Final Answer: Thus, the value of \( k \) is \( \boxed{6} \).

To solve the problem, we need to find the value of \( k \) such that the area of quadrilateral \( OACB \) is \( k \) times the area of the parallelogram formed by vectors \( \vec{OA} \) and \( \vec{OC} \). ### Step-by-Step Solution: 1. **Define the Vectors:** - Let \( \vec{OA} = \vec{a} \) - Let \( \vec{OB} = 10\vec{a} + 2\vec{b} \) - Let \( \vec{OC} = \vec{b} \) ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective type|19 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise fill in the blanks|14 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Martrix - match type|10 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

Let vec O A= vec a , hat O B=10 vec a+2 vec ba n d vec O C= vec b ,w h e r eO ,Aa n dC are non-collinear points. Let p denotes the areaof quadrilateral O A C B , and let q denote the area of parallelogram with O Aa n dO C as adjacent sides. If p=k q , then find kdot

Let vec O A= vec a , vec O B=10 vec a+2 vec b ,a n d vec O C=bw h e r eO is origin. Let p denote the area of th quadrilateral O A B Ca n dq denote the area of teh parallelogram with O Aa n dO C as adjacent sides. Prove that p=6qdot

If vec A O+ vec O B= vec B O+ vec O C , prove that A , B , C are collinear points.

If vec A O+ vec O B= vec B O+ vec O C , prove that A , B , C are collinear points.

If vec P O+ vec O Q= vec Q O+ vec O R , show that the point, P ,Q ,R are collinear.

If vec A O+ vec O B= vec B O+ vec O C , then A ,Bn a dC are (where O is the origin) a. coplanar b. collinear c. non-collinear d. none of these

If vec A O+ vec O B= vec B O+ vec O C , then A ,B and C are (where O is the origin) a. coplanar b. collinear c. non-collinear d. none of these

if vec Ao + vec O B = vec B O + vec O C ,than prove that B is the midpoint of AC.

Let vec r be a unit vector satisfying vec rxx vec a= vec b ,w h e r e| vec a|=sqrt3a n d| vec b|=sqrt2. Then

The scalars la n dm such that l vec a+m vec b= vec c ,w h e r e vec a , vec ba n d vec c are given vectors, are equal to

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Integer type
  1. If veca and vecb are any two unit vectors, then find the greatest post...

    Text Solution

    |

  2. Let vecu be a vector on rectangular coodinate system with sloping angl...

    Text Solution

    |

  3. Find the absolute value of parameter t for which the area of the t...

    Text Solution

    |

  4. If veca=a(1)hati+a(2)hatj+a(3)hatk, vecb= b(1)hati+b(2)hatj + b(3)hatk...

    Text Solution

    |

  5. Let veca=alphahati+2hatj- 3hatk, vecb=hati+ 2alphahatj - 2hatk and vec...

    Text Solution

    |

  6. If vec x , vec y are two non-zero and non-collinear vectors satisf...

    Text Solution

    |

  7. Let vecu and vecv be unit vectors such that vecu xx vecv + vecu = vecw...

    Text Solution

    |

  8. The volume of the tetrahedron whose vertices are the points with posit...

    Text Solution

    |

  9. Given that vecu = hati + 2hatj + 3hatk , vecv = 2hati + hatk + 4hatk ,...

    Text Solution

    |

  10. Let a three- dimensional vector vecV satisfy the condition , 2vecV + v...

    Text Solution

    |

  11. If veca, vecb, vecc are unit vectors such that veca. vecb =0 = veca.ve...

    Text Solution

    |

  12. Let vec O A= vec a , vec O B=10 vec a+2 vec ba n d vec O C= vec b ,w ...

    Text Solution

    |

  13. Find the work done by the force F=3 hat i- hat j-2 hat k acting on a...

    Text Solution

    |

  14. If veca and vecb are vectors in space given by veca= (hati-2hatj)/sqrt...

    Text Solution

    |

  15. Let veca=-hati-hatk,vecb =-hati + hatj and vecc = i + 2hatj + 3hatk be...

    Text Solution

    |

  16. If veca, vecb and vecc are unit vectors satisfying |veca-vecb|^(2)+|ve...

    Text Solution

    |

  17. Let vec a, vec b, and vec c be three non coplanar unit vectors such th...

    Text Solution

    |