Home
Class 11
MATHS
vecA=(2veci+veck),vecB=(veci+vecj+veck) ...

`vecA=(2veci+veck),vecB=(veci+vecj+veck) and vecC=4veci-vec3j+7veck` determine a `vecR` satisfying `vecRxxvecB=vecCxxvecB and vecR.vecA=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the vector \(\vec{R}\) that satisfies two conditions: 1. \(\vec{R} \times \vec{B} = \vec{C} \times \vec{B}\) 2. \(\vec{R} \cdot \vec{A} = 0\) Given: - \(\vec{A} = 2\vec{i} + \vec{k}\) - \(\vec{B} = \vec{i} + \vec{j} + \vec{k}\) - \(\vec{C} = 4\vec{i} - 3\vec{j} + 7\vec{k}\) ### Step 1: Calculate \(\vec{C} \times \vec{B}\) Using the determinant method for the cross product: \[ \vec{C} \times \vec{B} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 4 & -3 & 7 \\ 1 & 1 & 1 \end{vmatrix} \] Calculating the determinant: \[ \vec{C} \times \vec{B} = \vec{i} \begin{vmatrix} -3 & 7 \\ 1 & 1 \end{vmatrix} - \vec{j} \begin{vmatrix} 4 & 7 \\ 1 & 1 \end{vmatrix} + \vec{k} \begin{vmatrix} 4 & -3 \\ 1 & 1 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \(\begin{vmatrix} -3 & 7 \\ 1 & 1 \end{vmatrix} = (-3)(1) - (7)(1) = -3 - 7 = -10\) 2. \(\begin{vmatrix} 4 & 7 \\ 1 & 1 \end{vmatrix} = (4)(1) - (7)(1) = 4 - 7 = -3\) 3. \(\begin{vmatrix} 4 & -3 \\ 1 & 1 \end{vmatrix} = (4)(1) - (-3)(1) = 4 + 3 = 7\) Putting it all together: \[ \vec{C} \times \vec{B} = -10\vec{i} + 3\vec{j} + 7\vec{k} \] ### Step 2: Set up the equation for \(\vec{R}\) From the first condition, we have: \[ \vec{R} \times \vec{B} = \vec{C} \times \vec{B} \] This implies: \[ \vec{R} - \vec{C} \text{ is parallel to } \vec{B} \] Thus, we can express \(\vec{R}\) as: \[ \vec{R} = \vec{C} + t\vec{B} \] for some scalar \(t\). ### Step 3: Substitute \(\vec{C}\) and \(\vec{B}\) Substituting the values of \(\vec{C}\) and \(\vec{B}\): \[ \vec{R} = (4\vec{i} - 3\vec{j} + 7\vec{k}) + t(\vec{i} + \vec{j} + \vec{k}) \] This expands to: \[ \vec{R} = (4 + t)\vec{i} + (-3 + t)\vec{j} + (7 + t)\vec{k} \] ### Step 4: Use the second condition \(\vec{R} \cdot \vec{A} = 0\) Now, we need to satisfy the second condition: \[ \vec{R} \cdot \vec{A} = 0 \] Calculating the dot product: \[ \vec{R} \cdot \vec{A} = (4 + t)(2) + (-3 + t)(0) + (7 + t)(1) = 0 \] This simplifies to: \[ 2(4 + t) + (7 + t) = 0 \] Expanding this gives: \[ 8 + 2t + 7 + t = 0 \] Combining like terms: \[ 15 + 3t = 0 \] ### Step 5: Solve for \(t\) Solving for \(t\): \[ 3t = -15 \implies t = -5 \] ### Step 6: Substitute \(t\) back into \(\vec{R}\) Now substitute \(t = -5\) back into the equation for \(\vec{R}\): \[ \vec{R} = (4 - 5)\vec{i} + (-3 - 5)\vec{j} + (7 - 5)\vec{k} \] This simplifies to: \[ \vec{R} = -\vec{i} - 8\vec{j} + 2\vec{k} \] ### Final Result Thus, the vector \(\vec{R}\) is: \[ \vec{R} = -\vec{i} - 8\vec{j} + 2\vec{k} \]

To solve the problem, we need to determine the vector \(\vec{R}\) that satisfies two conditions: 1. \(\vec{R} \times \vec{B} = \vec{C} \times \vec{B}\) 2. \(\vec{R} \cdot \vec{A} = 0\) Given: - \(\vec{A} = 2\vec{i} + \vec{k}\) - \(\vec{B} = \vec{i} + \vec{j} + \vec{k}\) ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise fill in the blanks|14 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise True and false|3 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Integer type|17 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

If veca=veci-2vecj+veck, vecb=veci+vecj+veck and vecc=veci+2vecj+veck then show that veca.(vecbxxvecc)=(vecaxxvecb).vecc.

If vecA=2veci+vecj-3veck vecB=veci-2vecj+veck and vecC=-veci+vecj-vec4k find vecAxx(vecBxxvecC)

If vecA=2veci+3vecj+4veck and vecB=4veci+3vecj+2veck, find vecAxxvecB .

If vecA=2veci-3vecj+7veck, vecB=veci+2veck and vecC=vecj-veck find vecA.(vecBxxvecC) .

If veca = 2veci+3vecj-veck, vecb =-veci+2vecj-4veck and vecc=veci + vecj + veck , then find the value of (veca xx vecb).(vecaxxvecc)

If veca = 2vecj+3vecj-veck, vecb =-veci+2vecj-4veck and vecc=veci + vecj + veck , then find the value of (veca xx vecb).(vecaxxvecc)

If veca=2veci+3vecj+4veck and vecb =4veci+3vecj+2veck , find the angle between veca and vecb .

Let veca=2veci+3vecj+4veck and vecb=3veci+4vecj+5veck . Find the angle between them.

If veca=veci+vec(2j)-veck,vecb=vec(2i)+vecj+vec(3k),vecc=veci-vecj+veck and vecd=vec(3i)+vecj+vec(2k) then evaluate (vecaxxvecb).(veccxxvecd)

If veca=veci+vec(2j)-veck,vecb=vec(2i)+vecj+vec(3k),vecc=veci-vecj+veck and vecd=vec(3i)+vecj+vec(2k) then evaluate (vecaxxvecb)xx(veccxxvecd)

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Subjective type
  1. From a point O inside a triangle A B C , perpendiculars O D ,O Ea n dO...

    Text Solution

    |

  2. A(1),A(2), …. A(n) are the vertices of a regular plane polygon with n ...

    Text Solution

    |

  3. If c is a given non - zero scalar, and vecA and vecB are given non- ze...

    Text Solution

    |

  4. A , B , Ca n dD are any four points in the space, then prove that |...

    Text Solution

    |

  5. If the vectors veca, vecb, and vecc are coplanar show that |(veca,vecb...

    Text Solution

    |

  6. vecA=(2veci+veck),vecB=(veci+vecj+veck) and vecC=4veci-vec3j+7veck det...

    Text Solution

    |

  7. Determine the value of c so that for the real x, vectors cx hati - 6 h...

    Text Solution

    |

  8. If vectors, vecb, vecc and vecd are not coplanar, the prove that vecto...

    Text Solution

    |

  9. The position vectors of the vertices A, B and C of a tetrahedron ABCD ...

    Text Solution

    |

  10. Let a , b and c be non-coplanar unit vectors equally incline...

    Text Solution

    |

  11. If vecA , vecB and vecC are vectors such that |vecB| = |vecC| prove th...

    Text Solution

    |

  12. For any two vectors vecu and vecv prove that (1+|vecu|^2)(1+|vecv|^2) ...

    Text Solution

    |

  13. Let vecu and vecv be unit vectors. If vecw is a vector such that vecw+...

    Text Solution

    |

  14. Find 3-dimensional vectors vec v1,vec v2,vec v3 satisfying vec v1* ve...

    Text Solution

    |

  15. Let V be the volume of the parallelepied formed by the vectors, veca ...

    Text Solution

    |

  16. vecu, vecv and vecw are three nono-coplanar unit vectors and alpha, be...

    Text Solution

    |

  17. If veca, vecb, vecc and vecd ar distinct vectors such that veca xx v...

    Text Solution

    |

  18. P1n dP2 are planes passing through origin L1a n dL2 are two lines o...

    Text Solution

    |

  19. about to only mathematics

    Text Solution

    |