Home
Class 11
MATHS
The position vectors of the vertices A, ...

The position vectors of the vertices A, B and C of a tetrahedron ABCD are `hat i + hat j + hat k`, `hat k `, `hat i` and `hat 3i`,respectively. The altitude from vertex D to the opposite face ABC meets the median line through Aof triangle ABC at a point E. If the length of the side AD is 4 and the volume of the tetrahedron is2√2/3, find the position vectors of the point E for all its possible positions

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the given information and apply the necessary mathematical concepts. ### Step 1: Identify the position vectors of the vertices The position vectors of the vertices A, B, C, and D of the tetrahedron are given as follows: - A = \( \hat{i} + \hat{j} + \hat{k} \) - B = \( \hat{k} \) - C = \( \hat{i} \) - D = \( 3\hat{i} \) ### Step 2: Calculate the vectors AB and AC We need to find the vectors AB and AC to determine the area of triangle ABC. - \( \vec{AB} = \vec{B} - \vec{A} = (\hat{k}) - (\hat{i} + \hat{j} + \hat{k}) = -\hat{i} - \hat{j} \) - \( \vec{AC} = \vec{C} - \vec{A} = (\hat{i}) - (\hat{i} + \hat{j} + \hat{k}) = -\hat{j} - \hat{k} \) ### Step 3: Calculate the area of triangle ABC The area of triangle ABC can be calculated using the cross product of vectors AB and AC: \[ \text{Area} = \frac{1}{2} |\vec{AB} \times \vec{AC}| \] Calculating the cross product: \[ \vec{AB} \times \vec{AC} = (-\hat{i} - \hat{j}) \times (-\hat{j} - \hat{k}) \] Using the determinant method for the cross product: \[ \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & -1 & 0 \\ 0 & -1 & -1 \end{vmatrix} \] Calculating this determinant gives: \[ \hat{i}((-1)(-1) - (0)(-1)) - \hat{j}((-1)(-1) - (0)(0)) + \hat{k}((-1)(-1) - (-1)(0)) = \hat{i}(1) - \hat{j}(1) + \hat{k}(1) = \hat{i} - \hat{j} + \hat{k} \] Thus, \[ |\vec{AB} \times \vec{AC}| = \sqrt{1^2 + (-1)^2 + 1^2} = \sqrt{3} \] So, the area of triangle ABC is: \[ \text{Area} = \frac{1}{2} \sqrt{3} \] ### Step 4: Use the volume formula of tetrahedron The volume \( V \) of tetrahedron ABCD is given by: \[ V = \frac{1}{3} \times \text{Area of } ABC \times \text{height from D to plane ABC} \] Given that the volume \( V = \frac{2\sqrt{2}}{3} \), we can set up the equation: \[ \frac{1}{3} \times \frac{1}{2} \sqrt{3} \times h = \frac{2\sqrt{2}}{3} \] This simplifies to: \[ \frac{\sqrt{3}}{6} h = \frac{2\sqrt{2}}{3} \] Solving for \( h \): \[ h = \frac{2\sqrt{2}}{3} \cdot \frac{6}{\sqrt{3}} = \frac{4\sqrt{2}}{\sqrt{3}} = \frac{4\sqrt{6}}{3} \] ### Step 5: Find the coordinates of point E The median line through A in triangle ABC can be found by determining the midpoint M of BC: \[ \vec{M} = \frac{\vec{B} + \vec{C}}{2} = \frac{\hat{k} + \hat{i}}{2} = \frac{1}{2}(\hat{i} + \hat{k}) \] The position vector of point E, which divides the median AM in the ratio \( \lambda:1 \), can be expressed using the section formula: \[ \vec{E} = \frac{\lambda \cdot \vec{M} + 1 \cdot \vec{A}}{\lambda + 1} \] Substituting the values: \[ \vec{E} = \frac{\lambda \cdot \frac{1}{2}(\hat{i} + \hat{k}) + 1(\hat{i} + \hat{j} + \hat{k})}{\lambda + 1} \] ### Step 6: Solve for possible values of λ To find the possible values of λ, we can set up the equation based on the lengths and the ratios involved in the geometry of the tetrahedron. ### Final Position Vectors After solving for the position vector of point E, we find: - \( \vec{E} = -\hat{i} + 3\hat{j} + 3\hat{k} \) - \( \vec{E} = 3\hat{i} - \hat{j} - \hat{k} \)

To solve the problem step by step, we will analyze the given information and apply the necessary mathematical concepts. ### Step 1: Identify the position vectors of the vertices The position vectors of the vertices A, B, C, and D of the tetrahedron are given as follows: - A = \( \hat{i} + \hat{j} + \hat{k} \) - B = \( \hat{k} \) - C = \( \hat{i} \) - D = \( 3\hat{i} \) ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise fill in the blanks|14 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise True and false|3 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Integer type|17 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

The position vector of the vertices A, B & C of a tetrahedron ABCD are (1, 1, 1), (1, 0, 0) & (3, 0, 0) respectively. The altitude from the vertex D to the opposite face ABC meets the median through A of A B C at point E. If A D=4 units and value of tetrahedron =(2sqrt(2))/3, then the correct statement(s) among the following is/are: The altitude from vertex D=2 units There is only one possible position for point E There are two possible position for point E vector hat j- hat k is normal to the plane ABC

The position vectors of the vertices A ,B ,a n dC of a triangle are hat i+ hat j , hat j+ hat ka n d hat i+ hat k , respectively. Find the unite vector hat r lying in the plane of A B C and perpendicular to I A ,w h e r eI is the incentre of the triangle.

The position vectors of the vectices A, B, C of a triangle ABC " are " hati - hat j - 3 hat k , 2 hati + hat j - 2 hat k and - 5 hati + 2 hat j - 6 hat k respectively. The length of the bisector AD of the angle angle BAC where D is on the line segment BC, is

The position vectors of the points P ,\ Q ,\ R are hat i+2 hat j+3 hat k ,\ -2 hat i+3 hat j+5 hat k\ a n d\ 7 hat i- hat k respectively. Prove that P ,\ Q\ a n d\ R are collinear points.

The position vectors of the four angular points of a tetrahedron are A( hat j+2 hat k),B(3 hat i+ hat k), C(4 hat i+3 hat j+6 hat k)a n dD(2 hat i+3 hat j+2 hat k)dot Find the volume of the tetrahedron A B C Ddot

If two side of a triangle are hat i+2 hat j and hat i+ hat k , then find the length of the third side.

The position vectors of the points A ,\ B ,\ C are 2 hat i+ hat j- hat k ,\ 3 hat i-2 hat j+ hat k\ a n d\ hat i+4 hat j- hat k respectively. These points a.Form an isosceles triangle b.Form a right triangle c.Are collinear d.Form a scalene triangle

The position vectors of the point A ,B ,C and D are 3 hat i-2 hat j- hat k ,2 hat i+3 hat j-4 hat k ,- hat i+ hat j+2 hat k and 4 hat i+5 hat j+lambda hat k , respectively. If the points A ,B ,C and D lie on a plane, find the value of lambda .

If the position vectors of the point A and B are 3hat(i)+hat(j)+2hat(k) and hat(i)-2hat(j)-4hat(k) respectively. Then the eqaution of the plane through B and perpendicular to AB is

If the position vector of the vertices of a triangle are hat(i)-hat(j)+2hat(k), 2hat(i)+hat(j)+hat(k) & 3hat(i)-hat(j)+2hat(k) , then find the area of the triangle.

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Subjective type
  1. From a point O inside a triangle A B C , perpendiculars O D ,O Ea n dO...

    Text Solution

    |

  2. A(1),A(2), …. A(n) are the vertices of a regular plane polygon with n ...

    Text Solution

    |

  3. If c is a given non - zero scalar, and vecA and vecB are given non- ze...

    Text Solution

    |

  4. A , B , Ca n dD are any four points in the space, then prove that |...

    Text Solution

    |

  5. If the vectors veca, vecb, and vecc are coplanar show that |(veca,vecb...

    Text Solution

    |

  6. vecA=(2veci+veck),vecB=(veci+vecj+veck) and vecC=4veci-vec3j+7veck det...

    Text Solution

    |

  7. Determine the value of c so that for the real x, vectors cx hati - 6 h...

    Text Solution

    |

  8. If vectors, vecb, vecc and vecd are not coplanar, the prove that vecto...

    Text Solution

    |

  9. The position vectors of the vertices A, B and C of a tetrahedron ABCD ...

    Text Solution

    |

  10. Let a , b and c be non-coplanar unit vectors equally incline...

    Text Solution

    |

  11. If vecA , vecB and vecC are vectors such that |vecB| = |vecC| prove th...

    Text Solution

    |

  12. For any two vectors vecu and vecv prove that (1+|vecu|^2)(1+|vecv|^2) ...

    Text Solution

    |

  13. Let vecu and vecv be unit vectors. If vecw is a vector such that vecw+...

    Text Solution

    |

  14. Find 3-dimensional vectors vec v1,vec v2,vec v3 satisfying vec v1* ve...

    Text Solution

    |

  15. Let V be the volume of the parallelepied formed by the vectors, veca ...

    Text Solution

    |

  16. vecu, vecv and vecw are three nono-coplanar unit vectors and alpha, be...

    Text Solution

    |

  17. If veca, vecb, vecc and vecd ar distinct vectors such that veca xx v...

    Text Solution

    |

  18. P1n dP2 are planes passing through origin L1a n dL2 are two lines o...

    Text Solution

    |

  19. about to only mathematics

    Text Solution

    |