Home
Class 11
MATHS
If veca and vecb are vectors in space gi...

If `veca and vecb` are vectors in space given by `veca= (hati-2hatj)/sqrt5and vecb= (2hati + hatj + 3hatk)/sqrt14` then find the value of `(2veca + vecb) . [(vecaxxvecb) xx (veca- 2vecb)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( (2\vec{a} + \vec{b}) \cdot [(\vec{a} \times \vec{b}) \times (\vec{a} - 2\vec{b})] \). Let's break this down step by step. ### Step 1: Define the vectors Given: \[ \vec{a} = \frac{\hat{i} - 2\hat{j}}{\sqrt{5}}, \quad \vec{b} = \frac{2\hat{i} + \hat{j} + 3\hat{k}}{\sqrt{14}} \] ### Step 2: Calculate \( 2\vec{a} + \vec{b} \) First, we calculate \( 2\vec{a} \): \[ 2\vec{a} = 2 \cdot \frac{\hat{i} - 2\hat{j}}{\sqrt{5}} = \frac{2\hat{i} - 4\hat{j}}{\sqrt{5}} \] Now, add \( \vec{b} \): \[ \vec{b} = \frac{2\hat{i} + \hat{j} + 3\hat{k}}{\sqrt{14}} \] To add these vectors, we need a common denominator. The common denominator is \( \sqrt{70} \) (which is \( \sqrt{5} \cdot \sqrt{14} \)): \[ 2\vec{a} + \vec{b} = \frac{2\hat{i} - 4\hat{j}}{\sqrt{5}} + \frac{2\hat{i} + \hat{j} + 3\hat{k}}{\sqrt{14}} = \frac{(2\sqrt{14})(\hat{i} - 2\hat{j}) + (2\sqrt{5})(2\hat{i} + \hat{j} + 3\hat{k})}{\sqrt{70}} \] Calculating the components: - For \( \hat{i} \): \( 2\sqrt{14} + 4\sqrt{5} \) - For \( \hat{j} \): \( -8\sqrt{14} + 2\sqrt{5} \) - For \( \hat{k} \): \( 6\sqrt{5} \) Thus, \[ 2\vec{a} + \vec{b} = \frac{(2\sqrt{14} + 4\sqrt{5})\hat{i} + (-8\sqrt{14} + 2\sqrt{5})\hat{j} + 6\sqrt{5}\hat{k}}{\sqrt{70}} \] ### Step 3: Calculate \( \vec{a} \times \vec{b} \) Using the determinant method: \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} & 0 \\ \frac{2}{\sqrt{14}} & \frac{1}{\sqrt{14}} & \frac{3}{\sqrt{14}} \end{vmatrix} \] Calculating the determinant: \[ \vec{a} \times \vec{b} = \hat{i} \left(-\frac{2}{\sqrt{5}} \cdot \frac{3}{\sqrt{14}} - 0\right) - \hat{j} \left(\frac{1}{\sqrt{5}} \cdot \frac{3}{\sqrt{14}} - 0\right) + \hat{k} \left(\frac{1}{\sqrt{5}} \cdot \frac{1}{\sqrt{14}} + \frac{2}{\sqrt{5}} \cdot \frac{2}{\sqrt{14}}\right) \] This simplifies to: \[ \vec{a} \times \vec{b} = \left(-\frac{6}{\sqrt{70}} \hat{i} - \frac{3}{\sqrt{70}} \hat{j} + \frac{5}{\sqrt{70}} \hat{k}\right) \] ### Step 4: Calculate \( \vec{a} - 2\vec{b} \) Calculating \( 2\vec{b} \): \[ 2\vec{b} = \frac{4\hat{i} + 2\hat{j} + 6\hat{k}}{\sqrt{14}} \] Now, subtract: \[ \vec{a} - 2\vec{b} = \frac{\hat{i} - 2\hat{j}}{\sqrt{5}} - \frac{4\hat{i} + 2\hat{j} + 6\hat{k}}{\sqrt{14}} \] Again, using a common denominator \( \sqrt{70} \): \[ \vec{a} - 2\vec{b} = \frac{(\sqrt{14}(\hat{i} - 2\hat{j}) - 4\sqrt{5}(\hat{i} + \frac{1}{2}\hat{j} + 3\hat{k}))}{\sqrt{70}} \] ### Step 5: Calculate the triple product Using the vector triple product identity: \[ \vec{u} \times (\vec{v} \times \vec{w}) = (\vec{u} \cdot \vec{w}) \vec{v} - (\vec{u} \cdot \vec{v}) \vec{w} \] Let \( \vec{u} = \vec{a} \), \( \vec{v} = \vec{b} \), \( \vec{w} = \vec{a} - 2\vec{b} \). ### Step 6: Calculate the dot products 1. \( \vec{a} \cdot (\vec{a} - 2\vec{b}) \) 2. \( \vec{a} \cdot \vec{b} \) ### Step 7: Final calculation Finally, substitute back into the expression \( (2\vec{a} + \vec{b}) \cdot [(\vec{a} \times \vec{b}) \times (\vec{a} - 2\vec{b})] \). ### Conclusion After calculating all the necessary components, you will arrive at the final value.

To solve the problem, we need to find the value of \( (2\vec{a} + \vec{b}) \cdot [(\vec{a} \times \vec{b}) \times (\vec{a} - 2\vec{b})] \). Let's break this down step by step. ### Step 1: Define the vectors Given: \[ \vec{a} = \frac{\hat{i} - 2\hat{j}}{\sqrt{5}}, \quad \vec{b} = \frac{2\hat{i} + \hat{j} + 3\hat{k}}{\sqrt{14}} \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective type|19 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise fill in the blanks|14 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Martrix - match type|10 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

If veca=(hati-2hatj)/(sqrt(5)) and vecb=(2hati+hatj+3hatk)/(sqrt(14)), then the value of (2veca+vecb)".[(veca xx vecb)xx(veca-2vecb)]

veca =1/sqrt(10)(3hati + hatk) and vecb =1/7(2hati +3hatj-6hatk) , then the value of (2veca-vecb).[(vecaxxvecb)xx(veca+2vecb)] is:

If veca=hati+hatj + hatk and vecb = hati - 2 hatj+hatk then find the vector vecc such that veca.vecc =2 and veca xx vecc=vecb .

If veca = (-hati + hatj - hatk) and vecb = (2hati- 2hatj + 2hatk) then find the unit vector in the direction of (veca + vecb) .

If veca = hati+hatj-2hatk, vecb=2hati-3hatj+hatk the value of (2veca+3vecb) . (2vecbxx3veca) is :

If veca = 2hati -3hatj-1hatk and vecb =hati + 4hatj -2hatk " then " veca xx vecb is

If vecA= 3hati+2hatj and vecB= 2hati+ 3hatj-hatk , then find a unit vector along (vecA-vecB) .

Let veca and vecb be unit vectors such that |veca+vecb|=sqrt3 . Then find the value of (2veca+5vecb).(3veca+vecb+vecaxxvecb)

find vecA xx vecB if vecA = hati - 2 hatj + 4 hatk and vecB = 3 hati - hatj + 2hatk

Given veca+vecb=2hati," if "vecb=3hatj-hatk then find out vector veca :-

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Integer type
  1. If veca and vecb are any two unit vectors, then find the greatest post...

    Text Solution

    |

  2. Let vecu be a vector on rectangular coodinate system with sloping angl...

    Text Solution

    |

  3. Find the absolute value of parameter t for which the area of the t...

    Text Solution

    |

  4. If veca=a(1)hati+a(2)hatj+a(3)hatk, vecb= b(1)hati+b(2)hatj + b(3)hatk...

    Text Solution

    |

  5. Let veca=alphahati+2hatj- 3hatk, vecb=hati+ 2alphahatj - 2hatk and vec...

    Text Solution

    |

  6. If vec x , vec y are two non-zero and non-collinear vectors satisf...

    Text Solution

    |

  7. Let vecu and vecv be unit vectors such that vecu xx vecv + vecu = vecw...

    Text Solution

    |

  8. The volume of the tetrahedron whose vertices are the points with posit...

    Text Solution

    |

  9. Given that vecu = hati + 2hatj + 3hatk , vecv = 2hati + hatk + 4hatk ,...

    Text Solution

    |

  10. Let a three- dimensional vector vecV satisfy the condition , 2vecV + v...

    Text Solution

    |

  11. If veca, vecb, vecc are unit vectors such that veca. vecb =0 = veca.ve...

    Text Solution

    |

  12. Let vec O A= vec a , vec O B=10 vec a+2 vec ba n d vec O C= vec b ,w ...

    Text Solution

    |

  13. Find the work done by the force F=3 hat i- hat j-2 hat k acting on a...

    Text Solution

    |

  14. If veca and vecb are vectors in space given by veca= (hati-2hatj)/sqrt...

    Text Solution

    |

  15. Let veca=-hati-hatk,vecb =-hati + hatj and vecc = i + 2hatj + 3hatk be...

    Text Solution

    |

  16. If veca, vecb and vecc are unit vectors satisfying |veca-vecb|^(2)+|ve...

    Text Solution

    |

  17. Let vec a, vec b, and vec c be three non coplanar unit vectors such th...

    Text Solution

    |