Home
Class 11
MATHS
If veca, vecb and vecc are unit vectors ...

If `veca, vecb and vecc` are unit vectors satisfying `|veca-vecb|^(2)+|vecb-vecc|^(2)+|vecc-veca|^(2)=9 " then find the value of " |2veca+ 5vecb+ 5vecc|`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Understand the given information We have three unit vectors \( \vec{a}, \vec{b}, \) and \( \vec{c} \) satisfying the equation: \[ |\vec{a} - \vec{b}|^2 + |\vec{b} - \vec{c}|^2 + |\vec{c} - \vec{a}|^2 = 9 \] ### Step 2: Expand the squares Using the identity \( |\vec{x} - \vec{y}|^2 = |\vec{x}|^2 + |\vec{y}|^2 - 2\vec{x} \cdot \vec{y} \), we can expand each term in the equation: \[ |\vec{a} - \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 - 2\vec{a} \cdot \vec{b} \] \[ |\vec{b} - \vec{c}|^2 = |\vec{b}|^2 + |\vec{c}|^2 - 2\vec{b} \cdot \vec{c} \] \[ |\vec{c} - \vec{a}|^2 = |\vec{c}|^2 + |\vec{a}|^2 - 2\vec{c} \cdot \vec{a} \] ### Step 3: Substitute the unit vector magnitudes Since \( \vec{a}, \vec{b}, \) and \( \vec{c} \) are unit vectors, we have \( |\vec{a}|^2 = |\vec{b}|^2 = |\vec{c}|^2 = 1 \). Therefore, we can substitute these values: \[ 1 + 1 - 2\vec{a} \cdot \vec{b} + 1 + 1 - 2\vec{b} \cdot \vec{c} + 1 + 1 - 2\vec{c} \cdot \vec{a} = 9 \] ### Step 4: Simplify the equation Combining the terms gives: \[ 3 + 3 - 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 9 \] This simplifies to: \[ 6 - 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 9 \] ### Step 5: Solve for the dot products Rearranging gives: \[ -2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 3 \] Thus, \[ \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = -\frac{3}{2} \] ### Step 6: Find \( |\vec{a} + \vec{b} + \vec{c}|^2 \) Using the identity \( |\vec{a} + \vec{b} + \vec{c}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) \): \[ |\vec{a} + \vec{b} + \vec{c}|^2 = 1 + 1 + 1 + 2(-\frac{3}{2}) = 3 - 3 = 0 \] This implies: \[ \vec{a} + \vec{b} + \vec{c} = 0 \quad \Rightarrow \quad \vec{b} + \vec{c} = -\vec{a} \] ### Step 7: Calculate \( |2\vec{a} + 5\vec{b} + 5\vec{c}| \) Substituting \( \vec{b} + \vec{c} = -\vec{a} \) into the expression: \[ |2\vec{a} + 5\vec{b} + 5\vec{c}| = |2\vec{a} + 5(-\vec{a})| = |2\vec{a} - 5\vec{a}| = |-3\vec{a}| \] Since \( |\vec{a}| = 1 \): \[ |-3\vec{a}| = 3 \] ### Final Answer Thus, the value of \( |2\vec{a} + 5\vec{b} + 5\vec{c}| \) is \( \boxed{3} \).

To solve the problem, we will follow these steps: ### Step 1: Understand the given information We have three unit vectors \( \vec{a}, \vec{b}, \) and \( \vec{c} \) satisfying the equation: \[ |\vec{a} - \vec{b}|^2 + |\vec{b} - \vec{c}|^2 + |\vec{c} - \vec{a}|^2 = 9 \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective type|19 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise fill in the blanks|14 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Martrix - match type|10 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

If veca, vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,7vecb-9vecc,12vecc-23veca)]

If veca, vecb, vecc are unit vectors such that veca. vecb =0 = veca.vecc and the angle between vecb and vecc is pi/3 , then find the value of |veca xx vecb -veca xx vecc|

Let veca vecb and vecc be pairwise mutually perpendicular vectors, such that |veca|=1, |vecb|=2, |vecc| = 2 , the find the length of veca +vecb + vecc .

Let veca vecb and vecc be pairwise mutually perpendicular vectors, such that |veca|=1, |vecb|=2, |vecc| = 2 , the find the length of veca +vecb + vecc .

Let veca, vecb, vecc be three unit vectors and veca.vecb=veca.vecc=0 . If the angle between vecb and vecc is pi/3 then find the value of |[veca vecb vecc]|

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

If veca,vecbandvecc are three vectors such that veca+vecb+vecc=0and|veca|=2,|vecb|=3and|vecc|=5 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If veca, vecb,vecc are three non-coplanar vectors such that veca xx vecb=vecc,vecb xx vecc=veca,vecc xx veca=vecb , then the value of |veca|+|vecb|+|vecc| is

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Integer type
  1. If veca and vecb are any two unit vectors, then find the greatest post...

    Text Solution

    |

  2. Let vecu be a vector on rectangular coodinate system with sloping angl...

    Text Solution

    |

  3. Find the absolute value of parameter t for which the area of the t...

    Text Solution

    |

  4. If veca=a(1)hati+a(2)hatj+a(3)hatk, vecb= b(1)hati+b(2)hatj + b(3)hatk...

    Text Solution

    |

  5. Let veca=alphahati+2hatj- 3hatk, vecb=hati+ 2alphahatj - 2hatk and vec...

    Text Solution

    |

  6. If vec x , vec y are two non-zero and non-collinear vectors satisf...

    Text Solution

    |

  7. Let vecu and vecv be unit vectors such that vecu xx vecv + vecu = vecw...

    Text Solution

    |

  8. The volume of the tetrahedron whose vertices are the points with posit...

    Text Solution

    |

  9. Given that vecu = hati + 2hatj + 3hatk , vecv = 2hati + hatk + 4hatk ,...

    Text Solution

    |

  10. Let a three- dimensional vector vecV satisfy the condition , 2vecV + v...

    Text Solution

    |

  11. If veca, vecb, vecc are unit vectors such that veca. vecb =0 = veca.ve...

    Text Solution

    |

  12. Let vec O A= vec a , vec O B=10 vec a+2 vec ba n d vec O C= vec b ,w ...

    Text Solution

    |

  13. Find the work done by the force F=3 hat i- hat j-2 hat k acting on a...

    Text Solution

    |

  14. If veca and vecb are vectors in space given by veca= (hati-2hatj)/sqrt...

    Text Solution

    |

  15. Let veca=-hati-hatk,vecb =-hati + hatj and vecc = i + 2hatj + 3hatk be...

    Text Solution

    |

  16. If veca, vecb and vecc are unit vectors satisfying |veca-vecb|^(2)+|ve...

    Text Solution

    |

  17. Let vec a, vec b, and vec c be three non coplanar unit vectors such th...

    Text Solution

    |