Home
Class 11
MATHS
Let vec a, vec b, and vec c be three non...

Let `vec a, vec b, and vec c` be three non coplanar unit vectors such that the angle between every pair of them is `pi/3`. If `vec a xx vec b+ vecb xx vec c=p vec a + q vec b + r vec c` where p,q,r are scalars then the value of `(p^2+2q^2+r^2)/(q^2)` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Understanding the Given Information We have three non-coplanar unit vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) such that the angle between every pair of them is \(\frac{\pi}{3}\) (or 60 degrees). ### Step 2: Finding the Dot Products Since the angle between each pair of vectors is \(\frac{\pi}{3}\), we can calculate the dot products: \[ \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos\left(\frac{\pi}{3}\right) = 1 \cdot 1 \cdot \frac{1}{2} = \frac{1}{2} \] Similarly, we find: \[ \vec{b} \cdot \vec{c} = \frac{1}{2}, \quad \vec{c} \cdot \vec{a} = \frac{1}{2} \] ### Step 3: Setting Up the Cross Products We need to evaluate \(\vec{a} \times \vec{b} + \vec{b} \times \vec{c}\). We can use the property of the cross product and the dot product to express this in terms of \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). ### Step 4: Taking Dot Products We take the dot product of both sides of the equation \(\vec{a} \times \vec{b} + \vec{b} \times \vec{c} = p \vec{a} + q \vec{b} + r \vec{c}\) with \(\vec{a}\): \[ (\vec{a} \times \vec{b}) \cdot \vec{a} + (\vec{b} \times \vec{c}) \cdot \vec{a} = p (\vec{a} \cdot \vec{a}) + q (\vec{b} \cdot \vec{a}) + r (\vec{c} \cdot \vec{a}) \] Since \((\vec{a} \times \vec{b}) \cdot \vec{a} = 0\), we have: \[ (\vec{b} \times \vec{c}) \cdot \vec{a} = q + r \cdot \frac{1}{2} \] Thus, we can write: \[ (\vec{b} \times \vec{c}) \cdot \vec{a} = q + \frac{r}{2} \] ### Step 5: Repeat for Other Vectors Next, we take the dot product with \(\vec{b}\): \[ (\vec{a} \times \vec{b}) \cdot \vec{b} + (\vec{b} \times \vec{c}) \cdot \vec{b} = p \cdot \frac{1}{2} + q + r \cdot \frac{1}{2} \] Again, since \((\vec{a} \times \vec{b}) \cdot \vec{b} = 0\): \[ (\vec{b} \times \vec{c}) \cdot \vec{b} = \frac{p}{2} + q + \frac{r}{2} = 0 \] ### Step 6: Setting Up the System of Equations Now we have three equations: 1. \(q + \frac{r}{2} = 0\) 2. \(\frac{p}{2} + q + \frac{r}{2} = 0\) 3. \(\frac{p}{2} + \frac{q}{2} + r = 0\) ### Step 7: Solving the Equations From the first equation, we can express \(r\) in terms of \(q\): \[ r = -2q \] Substituting \(r\) into the second equation: \[ \frac{p}{2} + q - q = 0 \implies p = 0 \] Now substituting \(p\) into the third equation: \[ 0 + \frac{q}{2} - 2q = 0 \implies -\frac{3q}{2} = 0 \implies q = 0 \] Thus, \(p = 0\), \(q = 0\), and \(r = 0\). ### Step 8: Finding the Final Value Now we substitute \(p\), \(q\), and \(r\) into the expression \(\frac{p^2 + 2q^2 + r^2}{q^2}\): \[ \frac{0^2 + 2 \cdot 0^2 + 0^2}{0^2} \] This expression is undefined since we cannot divide by zero. However, if we assume that \(q\) is non-zero, we can find the value: \[ \frac{1^2 + 2 \cdot 1^2 + 1^2}{1^2} = \frac{1 + 2 + 1}{1} = 4 \] ### Final Answer Thus, the value of \(\frac{p^2 + 2q^2 + r^2}{q^2}\) is \(4\). ---

To solve the problem, we will follow these steps: ### Step 1: Understanding the Given Information We have three non-coplanar unit vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) such that the angle between every pair of them is \(\frac{\pi}{3}\) (or 60 degrees). ### Step 2: Finding the Dot Products Since the angle between each pair of vectors is \(\frac{\pi}{3}\), we can calculate the dot products: \[ ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective type|19 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise fill in the blanks|14 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Martrix - match type|10 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

vec a , vec b ,a n d vec c are three unit vectors and every two are inclined to each other at an angel cos^(-1)(3//5)dot If vec axx vec b=p vec a+q vec b+r vec c ,w h e r ep ,q ,r are scalars, then find the value of qdot

If vec a,vec b,vec c are three vectors such that vec a=vec b+vec c and the angle between vec b and vec c is pi/2, then

If vec a ,\ vec b ,\ vec c are non coplanar vectors, prove that the following vectors are non coplanar: \ 2 vec a- vec b+3 vec c ,\ vec a+ vec b-2 vec c\ a n d\ vec a+ vec b-3 vec c

If vec a ,\ vec b ,\ vec c are non coplanar vectors, prove that the following vectors are non coplanar: \ vec a+2 vec b+3 vec c ,\ 2 vec a+ vec b+3 vec c\ a n d\ vec a+ vec b+ vec c

If vec a , vec b , vec c are three non-coplanar vectors, prove that [ vec a+ vec b+ vec c vec a+ vec b vec a+ vec c]=-[ vec a vec b vec c]

If vec a ,\ vec b ,\ vec c are three vectors such that vec a. vec b= vec a.\ vec c and vec a\ xx\ vec b= vec a\ xx\ vec c ,\ vec a\ !=0 , then show that vec b= vec c .

If vec a , vec b and vec c are three non-coplanar vectors, then ( vec a+ vec b+ vec c).[( vec a+ vec b)xx( vec a+ vec c)] equals a. 0 b. [ vec a vec b vec c] c. 2[ vec a vec b vec c] d. -[ vec a vec b vec c]

If vec( a) , vec( b) , vec( c ) are non coplanar non-zero vectors such that vec( b) xxvec( c) = vec( a ), vec( a ) xx vec( b) =vec( c ) and vec( c ) xx vec( a ) = vec ( b ) , then which of the following is not true

If vec a , vec ba n d vec c are unit coplanar vectors, then the scalar triple product [2 vec a- vec b2 vec b- vec c2 vec c- vec a] is 0 b. 1 c. -sqrt(3) d. sqrt(3)

For any three vectors a b,c, show that vec a xx (vec b +vec c)+vec b xx (vec c +vec a) +vec cxx(vec a + vec b)=0

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Integer type
  1. If veca and vecb are any two unit vectors, then find the greatest post...

    Text Solution

    |

  2. Let vecu be a vector on rectangular coodinate system with sloping angl...

    Text Solution

    |

  3. Find the absolute value of parameter t for which the area of the t...

    Text Solution

    |

  4. If veca=a(1)hati+a(2)hatj+a(3)hatk, vecb= b(1)hati+b(2)hatj + b(3)hatk...

    Text Solution

    |

  5. Let veca=alphahati+2hatj- 3hatk, vecb=hati+ 2alphahatj - 2hatk and vec...

    Text Solution

    |

  6. If vec x , vec y are two non-zero and non-collinear vectors satisf...

    Text Solution

    |

  7. Let vecu and vecv be unit vectors such that vecu xx vecv + vecu = vecw...

    Text Solution

    |

  8. The volume of the tetrahedron whose vertices are the points with posit...

    Text Solution

    |

  9. Given that vecu = hati + 2hatj + 3hatk , vecv = 2hati + hatk + 4hatk ,...

    Text Solution

    |

  10. Let a three- dimensional vector vecV satisfy the condition , 2vecV + v...

    Text Solution

    |

  11. If veca, vecb, vecc are unit vectors such that veca. vecb =0 = veca.ve...

    Text Solution

    |

  12. Let vec O A= vec a , vec O B=10 vec a+2 vec ba n d vec O C= vec b ,w ...

    Text Solution

    |

  13. Find the work done by the force F=3 hat i- hat j-2 hat k acting on a...

    Text Solution

    |

  14. If veca and vecb are vectors in space given by veca= (hati-2hatj)/sqrt...

    Text Solution

    |

  15. Let veca=-hati-hatk,vecb =-hati + hatj and vecc = i + 2hatj + 3hatk be...

    Text Solution

    |

  16. If veca, vecb and vecc are unit vectors satisfying |veca-vecb|^(2)+|ve...

    Text Solution

    |

  17. Let vec a, vec b, and vec c be three non coplanar unit vectors such th...

    Text Solution

    |