Home
Class 12
MATHS
Evaluate: intsec^p xtanx dx...

Evaluate: `intsec^p xtanx dx`

Text Solution

AI Generated Solution

To evaluate the integral \( \int \sec^p x \tan x \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We can express the integral as: \[ \int \sec^p x \tan x \, dx = \int \sec^{p-1} x \sec x \tan x \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXAMPLE|18 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.1|9 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate: intsec^n xtanx\ dx

Evaluate: intsec^6xtanxdx

Evaluate : intsec^4 x tan x dx.

Evaluate: intsec^3xdx

intsec^3xtanxdx

intsec^3xtanxdx

Evaluate: intsec^6x\ dx

Evaluate: intsec^4x\ dx

Evaluate: intsec^4x\ dx

Evaluate: intsec^3x\ dx