Home
Class 12
MATHS
Evaluate int(secx+tanx)^(2)dx...

Evaluate `int(secx+tanx)^(2)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int (\sec x + \tan x)^2 \, dx \), we can follow these steps: ### Step 1: Expand the Expression First, we expand the integrand: \[ (\sec x + \tan x)^2 = \sec^2 x + 2 \sec x \tan x + \tan^2 x \] ### Step 2: Substitute for \(\tan^2 x\) Using the identity \( \tan^2 x = \sec^2 x - 1 \), we can substitute this into our expression: \[ \sec^2 x + 2 \sec x \tan x + \tan^2 x = \sec^2 x + 2 \sec x \tan x + (\sec^2 x - 1) \] This simplifies to: \[ 2 \sec^2 x + 2 \sec x \tan x - 1 \] ### Step 3: Rewrite the Integral Now we rewrite the integral: \[ \int (\sec x + \tan x)^2 \, dx = \int (2 \sec^2 x + 2 \sec x \tan x - 1) \, dx \] ### Step 4: Split the Integral We can split the integral into three separate integrals: \[ \int (2 \sec^2 x) \, dx + \int (2 \sec x \tan x) \, dx - \int 1 \, dx \] ### Step 5: Evaluate Each Integral 1. The integral of \(2 \sec^2 x\) is: \[ 2 \tan x \] 2. The integral of \(2 \sec x \tan x\) is: \[ 2 \sec x \] 3. The integral of \(1\) is: \[ x \] ### Step 6: Combine the Results Combining all the results, we have: \[ \int (\sec x + \tan x)^2 \, dx = 2 \tan x + 2 \sec x - x + C \] ### Final Answer Thus, the final answer is: \[ \int (\sec x + \tan x)^2 \, dx = 2 \sec x + 2 \tan x - x + C \]

To evaluate the integral \( \int (\sec x + \tan x)^2 \, dx \), we can follow these steps: ### Step 1: Expand the Expression First, we expand the integrand: \[ (\sec x + \tan x)^2 = \sec^2 x + 2 \sec x \tan x + \tan^2 x \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.2|7 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.3|16 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXAMPLE|18 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(secx+tanx)^2dx

Evaluate: int(sec^2x)/(tanx+2)dx

Evaluate int(tanx)/(secx+tanx)dx

Evaluate: intsecx\ (secx+tanx)dx

intsecx(secx+tanx)dx

Evaluate: int(secxtanx)/(3secx+5)dx

Evaluate: int(sec^2x)/(3+tanx)dx

Evaluate: int(secx)/(secx+tanx)dxdot

Evaluate: int(secx)/(secx+tanx)dxdot

Evaluate: int(secx)/(secx+tanx)dxdot