Home
Class 12
MATHS
Evaluate int tan x tan(x+1)dx....

Evaluate `int tan x tan(x+1)dx`.

Text Solution

AI Generated Solution

To evaluate the integral \( \int \tan x \tan(x+1) \, dx \), we can use the identity for the tangent of a sum. The identity states that: \[ \tan(a + b) = \frac{\tan a + \tan b}{1 - \tan a \tan b} \] In our case, let \( a = x \) and \( b = 1 \). Thus, we can write: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXAMPLE|18 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.1|9 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate int tan^(-1) x dx

Evaluate: int(tanx-x)tan^2x dx

Evaluate int\tan5x\dx

Evaluate : int tan x tan 2 x tan 3x dx

Evaluate int tan^(3)x dx

Evaluate int\tan^2x\dx

Evaluate: int tan ^(-1) sqrt x dx

Evaluate: inte^x(1+tanx+tan^2x)dx

Evaluate: inte^x(1+tanx+tan^2x)dx

Evaluate int (tanx+tan^3x)/(1+tan^3x)dx