Home
Class 12
MATHS
Evaluate: int 2^(2^(2^x)) * 2^(2^x) * 2^...

Evaluate: `int 2^(2^(2^x)) * 2^(2^x) * 2^x dx`

Text Solution

AI Generated Solution

To evaluate the integral \( \int 2^{2^{2^x}} \cdot 2^{2^x} \cdot 2^x \, dx \), we will use substitution to simplify the expression step by step. ### Step 1: Simplify the Integral We start with the integral: \[ \int 2^{2^{2^x}} \cdot 2^{2^x} \cdot 2^x \, dx \] We can combine the exponents of the base 2: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXAMPLE|18 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.1|9 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_1^2x^2dx

Evaluate: int(x^2+2x+2)\ dx

Evaluate int_(0)^(2)2^(x)dx

Evaluate: int(2sin2x) \ dx

Evaluate: int(e^(2x))/(e^(2x)-2)dx

Evaluate: int(3-2x-2x^2)\ dx

Evaluate: int((2^x+3^x)^2)/(6^x)\ dx

Evaluate: int1/((x^2+2x+2))dx

Evaluate: int(2x)/(2+x-x^2)\ dx

Evaluate: inte^x(1+x)/(2+x)^2dx