Home
Class 12
MATHS
int 5^(x+tan^(-1)x)*((x^(2)+2)/(x^(2)+1)...

`int 5^(x+tan^(-1)x)*((x^(2)+2)/(x^(2)+1))dx`.

Text Solution

Verified by Experts

Let `x+tan^(-1)x=t`
` :. (1+(1)/(x^(2)+1))dx=dt " or "((x^(2)+2)/(x^(2)+1))dx=dt`
` :. int 5^(x+tan^(-1)x)*((x^(2)+2)/(x^(2)+1))dx=int 5^(t) dt`
`=(5^(t))/(log_(e)5)+c`
`=(5^(x+tan^(-1)x))/(log_(e)5)+c`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXAMPLE|18 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.1|9 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int5^(x+t a n^(-1)x)((x^2+2)/(x^2+1))dx

Evaluate: (i) int5^x+tan^((-1)x)((x^2+2)/(x^2+1))\ dx (ii) int(e^msin^((-1)x))/(sqrt(1-x^2))\ dx

int e^(tan^(-1)x) ((1+x+x^2)/(1+x^2))dx

If f(x)=inte^(x)(tan^(-1)x+(2x)/((1+x^(2))^(2)))dx,f(0)=0 then the value of f(1) is

int(1)/((tan^(-1)x)^(2))*(1)/((1+x^(2)))dx

The value of inte^(tan^-1x) ((1+x+x^2)/(1+x^2))dx

The value of inte^(tan^-1x) ((1+x+x^2)/(1+x^2))dx

The value of lim_(x->oo)(int_0^x(tan^(-1)x)^2)/(sqrt(x^2+1))dx

int 1/((1+x^2)tan^(-1)x)dx

inte^(tan^(-1)x)(1+(x)/(1+x^(2)))dx is equal to