To solve the integral \(\int \sin^5 x \, dx\), we can follow these steps:
### Step 1: Rewrite the Integral
We start by rewriting \(\sin^5 x\) as \((\sin^2 x)^2 \sin x\). Thus, we have:
\[
\int \sin^5 x \, dx = \int (\sin^2 x)^2 \sin x \, dx
\]
...
CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos
Similar Questions
Explore conceptually related problems
intsin^(5) x dx
Find: intsin^5x dx
Find: intsin^5x dx
intsin^3 2xdx
intsin^2 2xdx
intsin^2(2x+5)dx
intsin^8xdx
Find intsin^(3)x cos^(5)x dx .
Evaluate the following integrals. int sin^(5)xdx
Reduction formulas can be used to compute integrals of higher power of sinx,cosx,tanx etc. intsin^(5)xdx=-(1)/(5)sin^(4)xcosx+Asin^(2)xcosx-(8)/(15)cosx+C then A equals
CENGAGE ENGLISH-INDEFINITE INTEGRATION-Multiple Correct Answer Type