Home
Class 12
MATHS
Evaluate: int((log)(e x)edot(log)(e^2)ed...

Evaluate: `int((log)_(e x)edot(log)_(e^2)edot(log)_(e^3x)e)/x dx`

Text Solution

AI Generated Solution

To evaluate the integral \[ I = \int \frac{\log_e x \cdot \log_e 2 \cdot \log_e 3x}{x} \, dx, \] we can start by rewriting the logarithmic terms: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXAMPLE|18 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.1|9 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate int 5^(log _(e)x)dx

Evaluate int(log_(e)x)^(2)dx

Evaluate int(log_(e)x)^(2)dx

int (1+log_e x)/x dx

Evaluate: int(e^(5(log)_e x)-e^(4(log)_ex))/(e^(3(log)_e x)-e^(2logx))dx

Evaluate: int(e^(5\ (log)_e x)-e^(4\ (log)_e x))/(e^(3\ (log)_e x)-e^(2\ (log)_e x))\ dx

Evaluate: int(e^(6\ (log)_e x)-e^(5\ (log)_e x))/(e^(4\ (log)_e x)-e^(3\ (log)_e x))\ dx

Evaluate int(x+1)/(x(x+log_(e)x))dx

int((log _(e)x)^(3))/(x)dx

int log_(e)(a^(x))dx=