Evaluate:
`int(x)i spol y nom i a lfu n c t ionoft h en t h degr e e ,p rov et h a t-`
`inte^xf(x)dx=e^x[f(x)f^(prime)(x)+f^(x)=f^(x)++(-1)^nf^((n))(x)]`
Where `f^((n))(x)d e not e s(d^nf)/(dx^n)`
Text Solution
AI Generated Solution
To evaluate the integral \( I = \int e^x f(x) \, dx \), where \( f(x) \) is a polynomial function of degree \( n \), we can use integration by parts repeatedly. Let's go through the steps:
### Step 1: Set Up the Integral
We start with the integral:
\[
I = \int e^x f(x) \, dx
\]
...
CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos
Similar Questions
Explore conceptually related problems
If f(x) is polynomaial function of degree n, prove that int e^x f(x) dx=e^x[f(x)-f'(x)+f''(x)-f'''(x)+......+(-1)^n f^n (x)] where f^n(x)=(d^nf)/(dx^n)
Evaluate: inte^x(f(x)+f^(prime)(x))dx=e^xf(x)+C
Evaluate: inte^x(f(x)+f^(prime)(x))dx=e^xf(x)+C
If e^x+e^y=e^(x+y),p rov e t h a t(dy)/(dx)+e^(y-x)=0
int e^x {f(x)-f'(x)}dx= phi(x) , then int e^x f(x) dx is
If f (x) =e^(x)+ int_(0)^(1) (e^(x)+te^(-x))f (t) dt, find f(x) .
If int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt , then
If u=f(x^3),v=g(x^2),f^(prime)(x)=cosx ,a n dg^(prime)(x)=sinx ,t h e n(d u)/(d v) is
If u=f(x^3),v=g(x^2),f^(prime)(x)=cosx ,a n dg^(prime)(x)=sinx ,t h e n(d u)/(d v) is
Given the function f(x)=(a^x+a^(-x))/2(w h e r ea >2)dotT h e nf(x+y)+f(x-y)= (A) 2f(x).f(y) (B) f(x).f(y) (C) f(x)/f(y) (D) none of these
CENGAGE ENGLISH-INDEFINITE INTEGRATION-Multiple Correct Answer Type