Home
Class 12
MATHS
Evaluate int e^(2x) sin 3x dx....

Evaluate `int e^(2x) sin 3x dx`.

Text Solution

AI Generated Solution

To evaluate the integral \( \int e^{2x} \sin(3x) \, dx \), we will use the method of integration by parts, also known as the ILET method (Inverse Logarithmic Algebraic Trigonometric Exponential). Here’s the step-by-step solution: ### Step 1: Set up the integral Let: \[ I = \int e^{2x} \sin(3x) \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXAMPLE|18 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.1|9 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int e^(-2x) sin x dx

int e^(x) sin x dx .

Evaluate: inte^(2x)sin3x\ dx

Evaluate: inte^(2x)sin(3x+1)\ dx

Evaluate int (sin x)/(sin 3x) dx

Evaluate int e^(2x) ((1+ sin 2x)/(1+cos 2x))dx

Evaluate int x sin 3x dx .

Evaluate int x sin 3x dx .

Evaluate: int_ e^(x) . x^(2) dx

Evaluate int(x+e^(2x))dx