Home
Class 12
MATHS
Evaluate: inte^x\ (logx+1/(x^2))\ dx...

Evaluate: `inte^x\ (logx+1/(x^2))\ dx`

Text Solution

AI Generated Solution

To evaluate the integral \( I = \int e^x \left( \log x + \frac{1}{x^2} \right) dx \), we can break it down into two separate integrals: \[ I = \int e^x \log x \, dx + \int e^x \frac{1}{x^2} \, dx \] ### Step 1: Evaluate \( \int e^x \log x \, dx \) ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXAMPLE|18 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.1|9 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate: inte^x\ (logx+1/x)\ dx

Evaluate: int_1^2(logx)/(x^2)dx

Evaluate: int_1^2(logx)/(x)dx

Evaluate: int(logx)/x\ dx

Evaluate: inte^(3logx)(x^4+1)^(-1)\ dx

Evaluate: inte^(3logx)(x^4+1)^(-1)\ dx

Evaluate: int(logx)^2\ dx

Evaluate: int_0^1logx dx

Evaluate: int(logx)/(x^2)\ dx

Evaluate: inte^(3logx)(x^4+1)^(-1)dx