Home
Class 12
MATHS
Evaluate int(1-cosx)"cosec"^(2)xdx...

Evaluate `int(1-cosx)"cosec"^(2)xdx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int (1 - \cos x) \csc^2 x \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ \int (1 - \cos x) \csc^2 x \, dx \] We can separate this into two integrals: \[ \int \csc^2 x \, dx - \int \cos x \csc^2 x \, dx \] ### Step 2: Evaluate the First Integral The first integral is: \[ \int \csc^2 x \, dx \] The integral of \( \csc^2 x \) is a standard result: \[ \int \csc^2 x \, dx = -\cot x + C_1 \] ### Step 3: Evaluate the Second Integral Now we need to evaluate the second integral: \[ \int \cos x \csc^2 x \, dx \] Recall that \( \csc^2 x = \frac{1}{\sin^2 x} \), thus: \[ \int \cos x \csc^2 x \, dx = \int \frac{\cos x}{\sin^2 x} \, dx \] This can be rewritten as: \[ \int \cot x \, dx \] The integral of \( \cot x \) is: \[ \int \cot x \, dx = \ln |\sin x| + C_2 \] ### Step 4: Combine the Results Now we can combine the results from the two integrals: \[ \int (1 - \cos x) \csc^2 x \, dx = -\cot x - \ln |\sin x| + C \] where \( C = C_1 - C_2 \) is the constant of integration. ### Final Answer Thus, the final answer is: \[ -\cot x - \ln |\sin x| + C \] ---

To evaluate the integral \( \int (1 - \cos x) \csc^2 x \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ \int (1 - \cos x) \csc^2 x \, dx \] We can separate this into two integrals: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.2|7 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.3|16 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXAMPLE|18 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int(1-cosx)cos e c^2xdx

Evaluate intsec^(2)x"cosec"^(2)xdx .

Evaluate int(1-cosx)/(1+cosx)dx .

Evaluate : int("sec"x)/(1+"cosec"x)dx

Evaluate: int(cosx)/(1/4-cos^2x)\ dx

Evaluate: int x^(3)cosec^(2)x^(4)dx

Evaluate : int 4 cos xdx

Evaluate : int (1-tanx)sec^2xdx .

Evaluate : int (1)/(" cosec x ") " dx "

Evaluate: int(1-cosx)/(cosx(1+cosx))dx