Home
Class 12
MATHS
Evaluate: inta^(m x)b^(n x)dx...

Evaluate: `inta^(m x)b^(n x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int a^{mx} b^{nx} \, dx \] we can follow these steps: ### Step 1: Rewrite the integrand We can rewrite the integrand \( a^{mx} b^{nx} \) as follows: \[ a^{mx} b^{nx} = (a^m)^{x} (b^n)^{x} = (a^m b^n)^{x} \] ### Step 2: Use substitution Let \( k = a^m b^n \). Then the integral becomes: \[ \int (k)^{x} \, dx \] ### Step 3: Integrate The integral of \( k^x \) is given by: \[ \int k^x \, dx = \frac{k^x}{\ln(k)} + C \] ### Step 4: Substitute back Now, substituting back for \( k \): \[ \int a^{mx} b^{nx} \, dx = \frac{(a^m b^n)^{x}}{\ln(a^m b^n)} + C \] ### Step 5: Simplify We can simplify the logarithm in the denominator: \[ \ln(a^m b^n) = m \ln(a) + n \ln(b) \] Thus, the final answer is: \[ \int a^{mx} b^{nx} \, dx = \frac{(a^m b^n)^{x}}{m \ln(a) + n \ln(b)} + C \] ### Final Answer \[ \int a^{mx} b^{nx} \, dx = \frac{(a^m b^n)^{x}}{m \ln(a) + n \ln(b)} + C \] ---

To evaluate the integral \[ \int a^{mx} b^{nx} \, dx \] we can follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.2|7 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.3|16 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXAMPLE|18 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_a^b x^3dx

Evaluate: inte^x(1+n x^(n-1)-x^(2n))/((1-x^n)sqrt(1-x^(2n)))dx

Evaluate inta b x""dx

Evaluate: inta/(b+c e^x)dx

Evaluate: int_a^b cos x dx

Evaluate: inta/(b+c e^x)dx

Evaluate : inta/(a^xb^x)dx

Evaluate : int x^n log x dx.

Evaluate inta^(3x+3)\ dx, agt0

Evaluate int_a^b x^2 dx as limit of the sum.