Home
Class 12
MATHS
Evaluate int(tanx)/(secx+tanx)dx...

Evaluate `int(tanx)/(secx+tanx)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \frac{\tan x}{\sec x + \tan x} \, dx \), we can follow these steps: ### Step 1: Rewrite the integral in terms of sine and cosine We know that: - \( \tan x = \frac{\sin x}{\cos x} \) - \( \sec x = \frac{1}{\cos x} \) Thus, we can rewrite the integral as: \[ \int \frac{\tan x}{\sec x + \tan x} \, dx = \int \frac{\frac{\sin x}{\cos x}}{\frac{1}{\cos x} + \frac{\sin x}{\cos x}} \, dx \] ### Step 2: Simplify the expression This simplifies to: \[ \int \frac{\sin x}{1 + \sin x} \, dx \] ### Step 3: Rationalize the denominator To simplify further, we can multiply the numerator and the denominator by \( 1 - \sin x \): \[ \int \frac{\sin x (1 - \sin x)}{(1 + \sin x)(1 - \sin x)} \, dx = \int \frac{\sin x - \sin^2 x}{1 - \sin^2 x} \, dx \] Since \( 1 - \sin^2 x = \cos^2 x \), we have: \[ \int \frac{\sin x - \sin^2 x}{\cos^2 x} \, dx \] ### Step 4: Split the integral Now, we can split the integral into two parts: \[ \int \frac{\sin x}{\cos^2 x} \, dx - \int \frac{\sin^2 x}{\cos^2 x} \, dx \] This can be rewritten as: \[ \int \tan x \sec x \, dx - \int \tan^2 x \, dx \] ### Step 5: Evaluate the first integral The integral \( \int \tan x \sec x \, dx \) is known to be: \[ \sec x + C_1 \] ### Step 6: Evaluate the second integral The integral \( \int \tan^2 x \, dx \) can be rewritten using the identity \( \tan^2 x = \sec^2 x - 1 \): \[ \int \tan^2 x \, dx = \int (\sec^2 x - 1) \, dx = \int \sec^2 x \, dx - \int 1 \, dx \] This gives us: \[ \tan x - x + C_2 \] ### Step 7: Combine the results Now, combining both parts, we have: \[ \sec x - (\tan x - x) + C = \sec x - \tan x + x + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{\tan x}{\sec x + \tan x} \, dx = \sec x - \tan x + x + C \] ---

To evaluate the integral \( \int \frac{\tan x}{\sec x + \tan x} \, dx \), we can follow these steps: ### Step 1: Rewrite the integral in terms of sine and cosine We know that: - \( \tan x = \frac{\sin x}{\cos x} \) - \( \sec x = \frac{1}{\cos x} \) Thus, we can rewrite the integral as: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.2|7 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.3|16 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXAMPLE|18 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate: (i) int(tanx)/(secx+tanx)\ dx (ii) int(cos e c\ x)/(cos e c\ x-cotx)\ dx

Evaluate: int(secx)/(secx+tanx)dxdot

Evaluate: int(secx)/(secx+tanx)dxdot

Evaluate: int(secx)/(secx+tanx)dxdot

Evaluate: int tan^(-1)(secx+tanx)dx , -pi/2 < x < pi/2

Evaluate int tan^(-1)(secx+tanx)dx,-pi//2ltxlt pi//2

Evaluate: int(1-tanx)/(1+tanx)\ dx

Evaluate: int(1-tanx)/(1+tanx)\ dx

Evaluate: int(2tanx+3)/(3tanx+4)dx

Evaluate: int(2tanx+3)/(3tanx+4)dx