Home
Class 12
MATHS
If int1/(x+x^5)dx=f(x)+c ,t h e ne v a l...

If `int1/(x+x^5)dx=f(x)+c ,t h e ne v a l u a t eint(x^4)/(x+x^5)dxdot`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we start with the integral: \[ \int \frac{1}{x + x^5} \, dx = f(x) + c \] We need to evaluate the integral: \[ \int \frac{x^4}{x + x^5} \, dx \] ### Step 1: Simplify the integrand We can rewrite the integrand \(\frac{x^4}{x + x^5}\) by factoring out \(x\) from the denominator: \[ \frac{x^4}{x + x^5} = \frac{x^4}{x(1 + x^4)} = \frac{x^3}{1 + x^4} \] ### Step 2: Rewrite the integral Now, we can express the integral as: \[ \int \frac{x^3}{1 + x^4} \, dx \] ### Step 3: Use substitution Let’s use the substitution \(u = 1 + x^4\). Then, we differentiate: \[ du = 4x^3 \, dx \quad \Rightarrow \quad dx = \frac{du}{4x^3} \] Now, substituting \(u\) into the integral: \[ \int \frac{x^3}{u} \cdot \frac{du}{4x^3} = \frac{1}{4} \int \frac{1}{u} \, du \] ### Step 4: Integrate The integral of \(\frac{1}{u}\) is: \[ \frac{1}{4} \ln |u| + C = \frac{1}{4} \ln |1 + x^4| + C \] ### Step 5: Combine with known integral We know from the problem statement that: \[ \int \frac{1}{x + x^5} \, dx = f(x) + c \] Thus, we can express our integral as: \[ \int \frac{x^4}{x + x^5} \, dx = \frac{1}{4} \ln |1 + x^4| + C - (f(x) + c) \] ### Final Result Therefore, the evaluated integral is: \[ \int \frac{x^4}{x + x^5} \, dx = \frac{1}{4} \ln |1 + x^4| - f(x) + C' \] where \(C' = C - c\) is a new constant of integration. ---

To solve the given problem step by step, we start with the integral: \[ \int \frac{1}{x + x^5} \, dx = f(x) + c \] We need to evaluate the integral: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.2|7 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.3|16 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXAMPLE|18 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

If int1/(x+x^5)dx=f(x)+c ,then the value of int(x^4)/(x+x^5)dxdot

E v a l u a t e:int(x^4+x^2+1)/(x^2-x+1)dxdot

Evaluate: int1/(1+e^(-x))dxdot

Evaluate: int(x^5+x^4+e^x)\ dx

If int (e^x-1)/(e^x+1)dx=f(x)+C, then f(x) is equal to

Evaluate: int_(-1)^4f(x)dx=4a n dint_2^4(3-f(x))dx=7, then find the value of int_-1^(2)f(x)dxdot

Evaluate: int_(-1)^4f(x)dx=4a n dint_2^4(3-f(x))dx=7, then find the value of int_2^(-1)f(x)dxdot

Iff(x)=int_1^x(logt)/(1+t+t^2)dxAAxlt=1,t h e np rov et h a tf(x)=f(1/x)dot

Let f(x) be a continuous and periodic function such that f(x)=f(x+T) for all xepsilonR,Tgt0 .If int_(-2T)^(a+5T)f(x)dx=19(ag0) and int_(0)^(T)f(x)dx=2 , then find the value of int_(0)^(a)f(x)dx .

int(x+1)/(x(1+x e^x)^2)dx=log|1-f(x)|+f(x)+c , then f(x)=