Home
Class 12
MATHS
Evaluate int (x^(2)-sqrt(3x)+1)/(x^(4)-...

Evaluate `int (x^(2)-sqrt(3x)+1)/(x^(4)-x^(2)+1)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int \frac{x^2 - \sqrt{3}x + 1}{x^4 - x^2 + 1} \, dx, \] we will follow these steps: ### Step 1: Rewrite the Denominator We start by rewriting the denominator by adding and subtracting \(2x^2\): \[ x^4 - x^2 + 1 = (x^4 + 2x^2 + 1) - 3x^2 = (x^2 + 1)^2 - 3x^2. \] ### Step 2: Substitute into the Integral Now we substitute this back into the integral: \[ \int \frac{x^2 - \sqrt{3}x + 1}{(x^2 + 1)^2 - 3x^2} \, dx. \] ### Step 3: Factor the Denominator Recognizing that the denominator is of the form \(a^2 - b^2\), we can factor it: \[ (x^2 + 1 - \sqrt{3}x)(x^2 + 1 + \sqrt{3}x). \] ### Step 4: Perform Partial Fraction Decomposition Next, we can express the integrand using partial fractions: \[ \frac{x^2 - \sqrt{3}x + 1}{(x^2 + 1 - \sqrt{3}x)(x^2 + 1 + \sqrt{3}x)} = \frac{A}{x^2 + 1 - \sqrt{3}x} + \frac{B}{x^2 + 1 + \sqrt{3}x}. \] ### Step 5: Solve for Coefficients A and B To find \(A\) and \(B\), we multiply through by the denominator and equate coefficients. This will yield a system of equations that we can solve for \(A\) and \(B\). ### Step 6: Integrate Each Term Once we have \(A\) and \(B\), we can integrate each term separately. Each term will typically yield a logarithmic or arctangent function. ### Step 7: Combine Results Finally, we combine the results of the integrals and add the constant of integration \(C\). ### Final Result The final result will be of the form: \[ \int \frac{x^2 - \sqrt{3}x + 1}{x^4 - x^2 + 1} \, dx = 2 \tan^{-1}\left(\frac{2x + \sqrt{3}}{2}\right) + C. \]

To evaluate the integral \[ \int \frac{x^2 - \sqrt{3}x + 1}{x^4 - x^2 + 1} \, dx, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.6|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.7|10 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.4|20 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int1/(x^2sqrt(1+x^2))dx

Evaluate: int1/(x^2sqrt(1+x^2))dx

Evaluate: int1/(x^2sqrt(1+x^2))dx

int (x^(2)-1)/(x^(3)sqrt(2x^(4)-2x^(2)+1))dx=

Evaluate: int1/((x^2-4)sqrt(x+1))dx

Evaluate: int1/((x^2-4)sqrt(x+1))dx

Evaluate: int1/((x^2-4)sqrt(x+1))dx

Evaluate: int1/((x^2-4)sqrt(x+1))dx

Evaluate: int1/((x^2)sqrt(1-x^2))dx

Evaluate int(x dx)/(x^(3)sqrt(x^(2)-1)).