Home
Class 12
MATHS
Evaluate int(x^(2)+x+1)/(x^(2)-1)dx...

Evaluate `int(x^(2)+x+1)/(x^(2)-1)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \(\int \frac{x^2 + x + 1}{x^2 - 1} \, dx\), we will follow these steps: ### Step 1: Long Division Since the degree of the numerator \(x^2 + x + 1\) is equal to the degree of the denominator \(x^2 - 1\), we perform polynomial long division. 1. Divide \(x^2\) by \(x^2\) to get \(1\). 2. Multiply \(1\) by \(x^2 - 1\) to get \(x^2 - 1\). 3. Subtract \((x^2 - 1)\) from \((x^2 + x + 1)\): \[ (x^2 + x + 1) - (x^2 - 1) = x + 2 \] So, we can rewrite the integral as: \[ \int \left(1 + \frac{x + 2}{x^2 - 1}\right) \, dx \] ### Step 2: Separate the Integral Now we can separate the integral: \[ \int 1 \, dx + \int \frac{x + 2}{x^2 - 1} \, dx \] ### Step 3: Evaluate the First Integral The first integral is straightforward: \[ \int 1 \, dx = x \] ### Step 4: Evaluate the Second Integral Now we need to evaluate \(\int \frac{x + 2}{x^2 - 1} \, dx\). We can split this into two parts: \[ \int \frac{x}{x^2 - 1} \, dx + \int \frac{2}{x^2 - 1} \, dx \] #### Part A: Evaluate \(\int \frac{x}{x^2 - 1} \, dx\) For this integral, we can use substitution: Let \(u = x^2 - 1\), then \(du = 2x \, dx\) or \(\frac{1}{2} du = x \, dx\). Thus, we have: \[ \int \frac{x}{x^2 - 1} \, dx = \frac{1}{2} \int \frac{1}{u} \, du = \frac{1}{2} \ln |u| + C = \frac{1}{2} \ln |x^2 - 1| + C \] #### Part B: Evaluate \(\int \frac{2}{x^2 - 1} \, dx\) The integral \(\int \frac{2}{x^2 - 1} \, dx\) can be simplified using partial fractions: \[ \frac{2}{x^2 - 1} = \frac{2}{(x - 1)(x + 1)} = \frac{A}{x - 1} + \frac{B}{x + 1} \] Multiplying through by the denominator \((x - 1)(x + 1)\) gives: \[ 2 = A(x + 1) + B(x - 1) \] Setting \(x = 1\): \[ 2 = A(2) \Rightarrow A = 1 \] Setting \(x = -1\): \[ 2 = B(-2) \Rightarrow B = -1 \] Thus, we have: \[ \frac{2}{x^2 - 1} = \frac{1}{x - 1} - \frac{1}{x + 1} \] Now we can integrate: \[ \int \frac{2}{x^2 - 1} \, dx = \int \left(\frac{1}{x - 1} - \frac{1}{x + 1}\right) \, dx = \ln |x - 1| - \ln |x + 1| + C = \ln \left|\frac{x - 1}{x + 1}\right| + C \] ### Step 5: Combine All Parts Combining all parts, we have: \[ \int \frac{x^2 + x + 1}{x^2 - 1} \, dx = x + \frac{1}{2} \ln |x^2 - 1| + \ln \left|\frac{x - 1}{x + 1}\right| + C \] ### Final Answer Thus, the final answer is: \[ \int \frac{x^2 + x + 1}{x^2 - 1} \, dx = x + \frac{1}{2} \ln |x^2 - 1| + \ln \left|\frac{x - 1}{x + 1}\right| + C \]

To evaluate the integral \(\int \frac{x^2 + x + 1}{x^2 - 1} \, dx\), we will follow these steps: ### Step 1: Long Division Since the degree of the numerator \(x^2 + x + 1\) is equal to the degree of the denominator \(x^2 - 1\), we perform polynomial long division. 1. Divide \(x^2\) by \(x^2\) to get \(1\). 2. Multiply \(1\) by \(x^2 - 1\) to get \(x^2 - 1\). 3. Subtract \((x^2 - 1)\) from \((x^2 + x + 1)\): ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.6|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.7|10 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.4|20 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(x^2+x+1)/(x^2-x)dx

Evaluate: int(x^2+x+1)/(x^2-x+1)dx

Evaluate int(x-2)(x-1)\dx

Evaluate: int(x^2+x+1)\dx

Evaluate : int(x(1+x^(2)))/(1+x^(4))dx .

Evaluate int(1-x^(2))/(1+x^(2))dx.

Evaluate: int(3x^2+2x+1)/(x^2+x+1)dx

Evaluate int(x^2-x+1)\dx

Evaluate: int(1-x+x^2)dx

Evaluate : int(1-x^(2))/(x(1-x)) dx.