Home
Class 12
MATHS
Evaluate int(dx)/(sqrt(1+e^(x)+e^(2x)))...

Evaluate `int(dx)/(sqrt(1+e^(x)+e^(2x)))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{dx}{\sqrt{1 + e^x + e^{2x}}} \] we can follow these steps: ### Step 1: Substitution Let \( e^x = \frac{1}{y} \). Then, differentiating both sides gives us: \[ dx = -\frac{1}{y^2} dy \] ### Step 2: Rewrite the Integral Substituting \( e^x \) and \( dx \) into the integral, we have: \[ I = \int \frac{-\frac{1}{y^2} dy}{\sqrt{1 + \frac{1}{y} + \frac{1}{y^2}}} \] ### Step 3: Simplify the Denominator The expression inside the square root simplifies as follows: \[ 1 + \frac{1}{y} + \frac{1}{y^2} = \frac{y^2 + y + 1}{y^2} \] Thus, we can rewrite the integral as: \[ I = -\int \frac{y^2}{\sqrt{y^2 + y + 1}} \cdot \frac{1}{y^2} dy = -\int \frac{1}{\sqrt{y^2 + y + 1}} dy \] ### Step 4: Completing the Square To simplify \( y^2 + y + 1 \), we complete the square: \[ y^2 + y + 1 = \left(y + \frac{1}{2}\right)^2 + \frac{3}{4} \] ### Step 5: Rewrite the Integral Now, substituting back into the integral gives: \[ I = -\int \frac{1}{\sqrt{\left(y + \frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2}} dy \] ### Step 6: Use the Integral Formula Using the formula for the integral \[ \int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln |x + \sqrt{x^2 + a^2}| + C \] we can apply it here. Let \( x = y + \frac{1}{2} \) and \( a = \frac{\sqrt{3}}{2} \): \[ I = -\ln \left| y + \frac{1}{2} + \sqrt{\left(y + \frac{1}{2}\right)^2 + \frac{3}{4}} \right| + C \] ### Step 7: Substitute Back for \( y \) Recalling that \( y = \frac{1}{e^x} \), we substitute back: \[ I = -\ln \left| \frac{1}{e^x} + \frac{1}{2} + \sqrt{\left(\frac{1}{e^x} + \frac{1}{2}\right)^2 + \frac{3}{4}} \right| + C \] ### Final Expression Thus, the final answer is: \[ I = -\ln \left( \frac{1 + \frac{1}{2} e^x + \sqrt{(1 + \frac{1}{2} e^x)^2 + \frac{3}{4} e^{2x}}}{e^x} \right) + C \]

To evaluate the integral \[ I = \int \frac{dx}{\sqrt{1 + e^x + e^{2x}}} \] we can follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.8|7 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.9|15 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.6|6 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int(e^x)/(sqrt(5-4e^x-\ e^(2x)))\ dx

Evaluate: int(e^x)/(sqrt(5-4\ e^x-e^(2x)))\ dx

Evaluate: int(dx)/(sqrt(2e^(x)-1))=

Evaluate: int(e^x)/(sqrt(5-4e^x-e^(2x))) dx

Evaluate: int(e^x)/(sqrt(16-e^(2x)))

Evaluate: int(e^x)/(sqrt(16-e^(2x))) dx

Evaluate: (i) int(e^x)/(sqrt(4-e^(2x)))\ dx (ii) int(x^2)/(sqrt(1-x^6))\ dx

Evaluate: (i) int(e^x)/(sqrt(4-e^(2x)))\ dx (ii) int(x^2)/(sqrt(1-x^6))\ dx

Evaluate: (i) int(e^x)/(sqrt(4-e^(2x)))\ dx (ii) int(x^2)/(sqrt(1-x^6))\ dx

Evaluate : int (1)/(sqrt(1-e^(2x))) " dx "