Home
Class 12
MATHS
Evaluate: int(x^3)/((x-1)(x-2))\ dx...

Evaluate: `int(x^3)/((x-1)(x-2))\ dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{x^3}{(x-1)(x-2)} \, dx, \] we can start by simplifying the integrand using polynomial long division. ### Step 1: Polynomial Long Division We divide \(x^3\) by \((x-1)(x-2) = x^2 - 3x + 2\). 1. Divide the leading term: \(x^3 \div x^2 = x\). 2. Multiply \(x\) by \(x^2 - 3x + 2\): \[ x(x^2 - 3x + 2) = x^3 - 3x^2 + 2x. \] 3. Subtract this from \(x^3\): \[ x^3 - (x^3 - 3x^2 + 2x) = 3x^2 - 2x. \] So, we have: \[ \frac{x^3}{(x-1)(x-2)} = x + \frac{3x^2 - 2x}{(x-1)(x-2)}. \] ### Step 2: Rewrite the Integral Now we can rewrite the integral as: \[ I = \int \left( x + \frac{3x^2 - 2x}{(x-1)(x-2)} \right) \, dx. \] ### Step 3: Integrate the First Part The first part is straightforward: \[ \int x \, dx = \frac{x^2}{2}. \] ### Step 4: Partial Fraction Decomposition Now we need to integrate the second part: \[ \int \frac{3x^2 - 2x}{(x-1)(x-2)} \, dx. \] We will use partial fractions: \[ \frac{3x^2 - 2x}{(x-1)(x-2)} = \frac{A}{x-1} + \frac{B}{x-2}. \] Multiplying through by \((x-1)(x-2)\) gives: \[ 3x^2 - 2x = A(x-2) + B(x-1). \] Expanding the right side: \[ 3x^2 - 2x = Ax - 2A + Bx - B = (A + B)x + (-2A - B). \] ### Step 5: Set Up the System of Equations By comparing coefficients: 1. \(A + B = 3\) (coefficient of \(x\)) 2. \(-2A - B = -2\) (constant term) ### Step 6: Solve the System From the first equation: \[ B = 3 - A. \] Substituting into the second equation: \[ -2A - (3 - A) = -2 \implies -2A - 3 + A = -2 \implies -A - 3 = -2 \implies -A = 1 \implies A = -1. \] Then substituting back: \[ B = 3 - (-1) = 4. \] ### Step 7: Rewrite the Integral Now we can rewrite the integral: \[ \int \frac{3x^2 - 2x}{(x-1)(x-2)} \, dx = \int \left( \frac{-1}{x-1} + \frac{4}{x-2} \right) \, dx. \] ### Step 8: Integrate Now we integrate: \[ \int \frac{-1}{x-1} \, dx + \int \frac{4}{x-2} \, dx = -\ln|x-1| + 4\ln|x-2|. \] ### Step 9: Combine Results Now we combine all parts: \[ I = \frac{x^2}{2} - \ln|x-1| + 4\ln|x-2| + C. \] ### Final Answer Thus, the final answer is: \[ \int \frac{x^3}{(x-1)(x-2)} \, dx = \frac{x^2}{2} - \ln|x-1| + 4\ln|x-2| + C. \]

To evaluate the integral \[ I = \int \frac{x^3}{(x-1)(x-2)} \, dx, \] we can start by simplifying the integrand using polynomial long division. ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.9|15 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXERCISES (Single Correct Answer Type)|77 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.7|10 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(x^2-3x)/((x-1)(x-2))dx

Evaluate: int(x^3)/(x+1)dx

Evaluate: int(x^3)/(x+1)dx

Evaluate: int(x^3)/((x-1)(x-2)(x-3))\ dx

Evaluate: int(x^2)/((x-1)^3(x+1))\ dx

Evaluate: int(2x+1)/((x-2)(x-3))\ dx

Evaluate: int(x^2)/((x-1)^3(x+1))dx

Evaluate: int(2x-3)/((x^2-1)(2x+3))dx

Evaluate: int(3x+1)/((x-2)^2(x+2))\ dx

Evaluate : int(2x-3)/((x-1)^2(2x+3))dx