Home
Class 12
MATHS
Evaluate int(dx)/(sinx(3+cos^(2)x))...

Evaluate `int(dx)/(sinx(3+cos^(2)x))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int \frac{dx}{\sin x (3 + \cos^2 x)} \), we will follow these steps: ### Step 1: Multiply and Divide by \(\sin x\) We start by rewriting the integral: \[ I = \int \frac{\sin x \, dx}{\sin^2 x (3 + \cos^2 x)} \] This allows us to express \(\sin^2 x\) in terms of \(\cos^2 x\). ### Step 2: Use the Pythagorean Identity Using the identity \(\sin^2 x = 1 - \cos^2 x\), we can rewrite the integral as: \[ I = \int \frac{\sin x \, dx}{(1 - \cos^2 x)(3 + \cos^2 x)} \] ### Step 3: Substitution Let \( t = \cos x \). Then, \( dt = -\sin x \, dx \) or \( \sin x \, dx = -dt \). The integral becomes: \[ I = -\int \frac{dt}{(1 - t^2)(3 + t^2)} \] ### Step 4: Simplify the Integral We can rewrite the integral as: \[ I = -\int \frac{dt}{(3 + t^2)(1 - t^2)} \] ### Step 5: Partial Fraction Decomposition We will decompose this into partial fractions: \[ \frac{1}{(3 + t^2)(1 - t^2)} = \frac{A}{3 + t^2} + \frac{B}{1 - t^2} \] Multiplying through by the denominator gives: \[ 1 = A(1 - t^2) + B(3 + t^2) \] Expanding and collecting like terms, we get: \[ 1 = (B - A)t^2 + (3B + A) \] From this, we can set up the equations: 1. \( B - A = 0 \) 2. \( 3B + A = 1 \) ### Step 6: Solve for A and B From \( B - A = 0 \), we have \( B = A \). Substituting into the second equation: \[ 3A + A = 1 \implies 4A = 1 \implies A = \frac{1}{4}, B = \frac{1}{4} \] ### Step 7: Substitute Back into the Integral Now we can rewrite the integral: \[ I = -\int \left( \frac{1/4}{3 + t^2} + \frac{1/4}{1 - t^2} \right) dt \] This gives: \[ I = -\frac{1}{4} \int \frac{dt}{3 + t^2} - \frac{1}{4} \int \frac{dt}{1 - t^2} \] ### Step 8: Evaluate Each Integral 1. The first integral: \[ \int \frac{dt}{3 + t^2} = \frac{1}{\sqrt{3}} \tan^{-1}\left(\frac{t}{\sqrt{3}}\right) \] 2. The second integral: \[ \int \frac{dt}{1 - t^2} = \frac{1}{2} \ln\left|\frac{1+t}{1-t}\right| \] ### Step 9: Combine Results Putting it all together, we have: \[ I = -\frac{1}{4} \left( \frac{1}{\sqrt{3}} \tan^{-1}\left(\frac{t}{\sqrt{3}}\right) + \frac{1}{2} \ln\left|\frac{1+t}{1-t}\right| \right) + C \] ### Step 10: Substitute Back for \(t\) Substituting back \( t = \cos x \): \[ I = -\frac{1}{4} \left( \frac{1}{\sqrt{3}} \tan^{-1}\left(\frac{\cos x}{\sqrt{3}}\right) + \frac{1}{2} \ln\left|\frac{1+\cos x}{1-\cos x}\right| \right) + C \] ### Final Answer Thus, the evaluated integral is: \[ I = -\frac{1}{4\sqrt{3}} \tan^{-1}\left(\frac{\cos x}{\sqrt{3}}\right) - \frac{1}{8} \ln\left|\frac{1+\cos x}{1-\cos x}\right| + C \]

To evaluate the integral \( I = \int \frac{dx}{\sin x (3 + \cos^2 x)} \), we will follow these steps: ### Step 1: Multiply and Divide by \(\sin x\) We start by rewriting the integral: \[ I = \int \frac{\sin x \, dx}{\sin^2 x (3 + \cos^2 x)} \] This allows us to express \(\sin^2 x\) in terms of \(\cos^2 x\). ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.9|15 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXERCISES (Single Correct Answer Type)|77 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.7|10 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(dx)/(sinx(3+cos^2x)

Evaluate: int(dx)/(sinx(3+2cosx)

Evaluate : int(sinx)/(cos^(9//2)x)dx

Find int(dx)/(sinx cos^(3)x) .

Evaluate : int(dx)/(sinx+sin2x)

Evaluate. int(dx)/(sinx+sin2x)

Evaluate : int ("sinx ")/("cos"^(2) x) " dx "

Evaluate: inte^(2x)sinx\ dx

Evaluate: inte^(2x)sinx\ dx

Evaluate: int1/(sinx(2cos^2x-1)dx