Home
Class 12
MATHS
Evaluate: int(cos2xsin4x dx)/(cos^4x(1+c...

Evaluate: `int(cos2xsin4x dx)/(cos^4x(1+cos^2 2x)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{\cos 2x \sin 4x \, dx}{\cos^4 x (1 + \cos^2 2x)} \] we will follow these steps: ### Step 1: Rewrite \(\sin 4x\) We can use the identity \(\sin 4x = 2 \sin 2x \cos 2x\). Thus, we rewrite the integral: \[ I = \int \frac{\cos 2x (2 \sin 2x \cos 2x) \, dx}{\cos^4 x (1 + \cos^2 2x)} = 2 \int \frac{\cos^2 2x \sin 2x \, dx}{\cos^4 x (1 + \cos^2 2x)} \] ### Step 2: Substitute \(\cos 2x\) Let \(t = \cos 2x\). Then, we differentiate \(t\): \[ dt = -2 \sin 2x \, dx \quad \Rightarrow \quad \sin 2x \, dx = -\frac{1}{2} dt \] Substituting this into the integral gives: \[ I = 2 \int \frac{t^2 \left(-\frac{1}{2} dt\right)}{\cos^4 x (1 + t^2)} = -\int \frac{t^2 \, dt}{\cos^4 x (1 + t^2)} \] ### Step 3: Rewrite \(\cos^4 x\) Using the identity \(\cos^2 x = \frac{1 + \cos 2x}{2}\), we have: \[ \cos^4 x = \left(\frac{1 + \cos 2x}{2}\right)^2 = \frac{(1 + t)^2}{4} \] Thus, we can rewrite the integral as: \[ I = -\int \frac{t^2 \, dt}{\frac{(1 + t)^2}{4} (1 + t^2)} = -4 \int \frac{t^2 \, dt}{(1 + t)^2 (1 + t^2)} \] ### Step 4: Partial Fraction Decomposition We need to perform partial fraction decomposition on: \[ \frac{t^2}{(1 + t)^2 (1 + t^2)} \] Assuming: \[ \frac{t^2}{(1 + t)^2 (1 + t^2)} = \frac{A}{1 + t} + \frac{B}{(1 + t)^2} + \frac{Ct + D}{1 + t^2} \] Multiplying through by the denominator \((1 + t)^2 (1 + t^2)\) and equating coefficients will allow us to solve for \(A\), \(B\), \(C\), and \(D\). ### Step 5: Integrate Each Term Once we have the coefficients, we can integrate each term separately. The integrals will involve: 1. \(\int \frac{1}{1 + t} dt\) 2. \(\int \frac{1}{(1 + t)^2} dt\) 3. \(\int \frac{t}{1 + t^2} dt\) ### Step 6: Back Substitute After integrating, we will substitute back \(t = \cos 2x\) to express the final result in terms of \(x\). ### Final Result The final expression will be: \[ I = -4 \left( \text{integrated terms} \right) + C \] where \(C\) is the constant of integration.

To evaluate the integral \[ I = \int \frac{\cos 2x \sin 4x \, dx}{\cos^4 x (1 + \cos^2 2x)} \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.9|15 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXERCISES (Single Correct Answer Type)|77 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.7|10 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(sin^3x dx)/((cos^4x+3cos^2x+1)tan^(-1)(secx+cosx)

Evaluate: int(1+x^2)cos2x\ dx

Evaluate: int(cos2x+2\ sin^2x)/(cos^2x)\ dx

Evaluate: int1/(4cos^2x+9sin^2x)dx

Evaluate: int(cos2x)/(s in^2x cos^2x)\ dx

Evaluate: int(cos^2x-sin^2x)/(sqrt(1+cos4x))\ dx

Evaluate: int(cos5x+cos4x)/(1-2cos3x)dx

Evaluate: int1/(4cos^2x+9sin^2x)\ dx

Evaluate: int(cos5x+cos4x)/(1-2cos3x)\ dx

Evaluate: int(cos5x+cos4x)/(1-2cos3x)\ dx