Home
Class 12
MATHS
int(1-cosx)/(cosx(1+cosx))dx...

`int(1-cosx)/(cosx(1+cosx))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1 - \cos x}{\cos x (1 + \cos x)} \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand We start with the expression: \[ \frac{1 - \cos x}{\cos x (1 + \cos x)} \] We can rewrite \(1 - \cos x\) as: \[ 1 - \cos x = (1 + \cos x) - 2\cos x \] This allows us to express the integrand as: \[ \frac{(1 + \cos x) - 2\cos x}{\cos x (1 + \cos x)} = \frac{1 + \cos x}{\cos x (1 + \cos x)} - \frac{2\cos x}{\cos x (1 + \cos x)} \] This simplifies to: \[ \frac{1}{\cos x} - \frac{2}{1 + \cos x} \] ### Step 2: Separate the integral Now we can separate the integral: \[ \int \left( \frac{1}{\cos x} - \frac{2}{1 + \cos x} \right) \, dx = \int \sec x \, dx - 2 \int \frac{1}{1 + \cos x} \, dx \] ### Step 3: Solve the first integral The integral of \(\sec x\) is: \[ \int \sec x \, dx = \ln | \sec x + \tan x | + C_1 \] ### Step 4: Solve the second integral For the integral \(\int \frac{1}{1 + \cos x} \, dx\), we can use the identity \(1 + \cos x = 2 \cos^2\left(\frac{x}{2}\right)\): \[ \int \frac{1}{1 + \cos x} \, dx = \int \frac{1}{2 \cos^2\left(\frac{x}{2}\right)} \, dx = \frac{1}{2} \int \sec^2\left(\frac{x}{2}\right) \, dx \] The integral of \(\sec^2\) is: \[ \int \sec^2\left(\frac{x}{2}\right) \, dx = 2 \tan\left(\frac{x}{2}\right) + C_2 \] Thus, we have: \[ \int \frac{1}{1 + \cos x} \, dx = \tan\left(\frac{x}{2}\right) + C_2 \] ### Step 5: Combine the results Putting it all together, we have: \[ \int \frac{1 - \cos x}{\cos x (1 + \cos x)} \, dx = \ln | \sec x + \tan x | - 2 \tan\left(\frac{x}{2}\right) + C \] ### Final Answer Thus, the final answer is: \[ \int \frac{1 - \cos x}{\cos x (1 + \cos x)} \, dx = \ln | \sec x + \tan x | - 2 \tan\left(\frac{x}{2}\right) + C \]

To solve the integral \( \int \frac{1 - \cos x}{\cos x (1 + \cos x)} \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand We start with the expression: \[ \frac{1 - \cos x}{\cos x (1 + \cos x)} \] We can rewrite \(1 - \cos x\) as: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.9|15 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXERCISES (Single Correct Answer Type)|77 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.7|10 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int (1-cosx) /(cos x(1+cos x)) dx

int(1-cosx)/(1+cosx)\ dx

int(1+sinx)/(sinx(1+cosx))dx

int(1+sinx)/(sinx(1+cosx))dx

Evaluate int(1-cosx)/(1+cosx)dx .

int(1+cosx)/(1-cosx)\ dx

Evaluate: int(1+2xsinx-cosx)/(x(1-cosx))dx

int (cosx-cos2x)/(1-cosx) dx

Evaluate: intsqrt((1-cosx)/(1+cosx))dx

Evaluate int ((1+cosx)/(1-cosx)) dx